Chem 4A Lecture 05: Matter Waves
QM Particle in Box

9/8/2008

Light Wave/Particle Duality
Wave (length, frequency) Particle (Momentum)

\[\lambda = \frac{h}{p} \]
\[E = h\nu = \frac{hc}{\lambda} \]
\[E = mc^2 = pc \]
\[p = h/\lambda \]

Matter Particle/Wave Duality (de Broglie)

Momentum

\[e^- \rightarrow p = mv \]

Particle

Wave

\[\psi^2 \sim \text{Probability} \]
\[\lambda = \frac{h}{p} \]
\[h = 6.62 \times 10^{-34} \text{ Js} \]

Diffraction and Interference

Intensity

\[A + B \]

Probability Distribution

© 2008 A. Pines M. Kubinec
De Broglie Wavelengths

<table>
<thead>
<tr>
<th>Particle</th>
<th>de Broglie λ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon (yellow)</td>
<td>~ 600</td>
</tr>
<tr>
<td>e^- ($v \sim 10^5$ m sec$^{-1}$)</td>
<td>~ 6</td>
</tr>
<tr>
<td>Na (80K, $v \sim 300$ m sec$^{-1}$)</td>
<td>~ 0.06</td>
</tr>
<tr>
<td>Baseball (170g, $v \sim 40$ m sec$^{-1}$)</td>
<td>$\sim 6 \times 10^{-26}$</td>
</tr>
</tbody>
</table>

ChemQuiz® 5.1

About how many photons should be able to ~stop the Na atom?

A) ~ 1
B) $\sim 10^2$
C) $\sim 10^4$

Particle in a Box

\[\frac{h^2}{2m} \frac{d^2\Psi}{dx^2} + V\Psi = E\Psi \]

\[\psi_n(x) = \frac{1}{\sqrt{L}} \sin \left(\frac{n\pi x}{L} \right) \]

\[E_n = \frac{n^2h^2}{8mL^2} \]

E n Nodes

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>States</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2008 M. Kubinec, A. Pines
ChemQuiz® 5.2

Which transition \(n_1 \rightarrow n_2 \) absorbs a photon with the highest energy?

A) \(1 \rightarrow 2 \) B) \(2 \rightarrow 3 \) C) \(4 \rightarrow 2 \)

Absorption and Emission Spectra
Atomic and Molecular Transitions

\[\Delta E = h\nu \]

ChemQuiz® 5.3

Shown is an energy-level scheme and the emission spectrum. Which line arises from \(3 \rightarrow 1 \)?

A) A B) B C) C
ChemQuiz® 5.4

To which energy-level scheme does the full emission spectrum correspond?

A) B) C)