Light as a Wave

Electromagnetic Radiation

- λ: wavelength
- ν: frequency
- c: speed

$\lambda \nu = c$

$c = 3.0 \times 10^8 \text{ m/s}$

Light as a Wave

Electromagnetic Spectrum

- Visible
- UV
- IR
- Microwave (MW)
- Radio, NMR, MRI

Diffraction and Interference

- Intensity
- Probability Distribution
Chem 4A Lecture 03: Light Waves
Absorption Emission

Diffraction and Interference

A + B

Intensity

Probability Distribution

ChemQuiz® 3.1

How will the two-slit interference pattern change upon decrease of λ?

A) B) C)

Wave Functions

Coordinates and quantum numbers

$\Psi(r, \theta, \varphi)$: Probability (e)

Three quantum numbers: n, ℓ, m_e

- n: Principal Energy
 - n: 1, 2, 3...
 - Total nodes $n-1$

- ℓ: Angular Momentum Shape
 - ℓ: 0 (s), 1 (p), 2 (d), n-1
 - Angular nodes $\pm \ell$

- m_e: Magnetic Orientation
 - m_e: $-\ell$, $-(-\ell-1)$, ..., 0, ..., $(-\ell)$, ℓ
Absorption and Emission

ChemQuiz® 3.2

What color is an object with the absorption spectrum shown?

A) ~ blue B) ~ green C) ~ red
ChemQuiz® 3.3

Glass is transparent. Which one is its absorption spectrum?

- A) I
- B) II
- C) III

ChemQuiz® 3.4

Through which of the filters (whose absorption spectra are shown) will a blue solution appear black?

- A) 1
- B) 2
- C) 3