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Metal-catalyzed cycloaddition reactions provide attractive and Table 1. Au(l)-Catalyzed Arene Synthesis: Enyne Scope

efficient methods for the synthesis of arenes, although regioselec- . .
tivity presents a major challenge for intermolecular reactiofise OPW i %A, OHOl x ’
synthesis of polysubstituted benzenes by the 422 + 2] /'L 2) Conditions A or B R‘JE o {‘:
cyclotrimerization of alkynéshas been extensively studied, as has

the Pd'CataIyZed [4+‘ 2] CyCloaddition Of enynes and aCtiVated entry enyne cp yield® conditions A®  yield® conditions B®  yield®
alkynes® We report herein a mechanistically distinct intermolecular o Lo
annulation of enynes and alkynes to produce multiply substituted v 7 % ; H:“’ O’O 9 79%

arenes (eq 1); styrene or fluorene products can be selectively
accessed by judicious choice of reaction conditions.

2 = 11 83% ; z:: 12 72% O’O 13 66%
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Given the synthetic utility of vinyl cyclopropanésye anticipated s CMpz2  2375% 2860% Ry
that alkynyl cyclopropanes derived from the cyclopropanation of
1,3-enynes would provide similar opportunities for organic syn-

6
R
thesis® In light of our previous work employing propargyl esters 7 vBuso  81e2% 82.66% O 3 9%
. . . 3579% % %
as carbene precursors in Au(l)-catalyzed cyclopropanation reactions ¢ L Ar 3089 o7 6o
9 | ‘ TMS 38 39 79% 40 95% . 41 59%

&@

of olefins®7 the reaction ofl with enyne2 was investigated. 10 NHTs42  4387% 471 25 60%
Initially, treatment ofl and2 with a cationic phosphinegold(l) 1 CH,OBz46  4773% 4889% a9 71%
complex resulted in a mixture of products, including styr@e 12 CHOTPSsosi7aw  s264%  8390%

fluorene 4, and cyclopropandrans5 (eq 2). The unexpected O O

products3 and 4 were intriguing; 3 formally results from a g S T W O’O R
completely regioselective [4 2] cross-dimerization of two different > z >

enynes, while compounds such4are of interest due to the blue- T R e wem T e

light emitting properties of polyfluorenés? 15 | oHexs1 e262% 2 C 63.53% nas
CgHgPh 64 65 58% 66 66%

v al S| \ H
_ﬁp _cawst &@ @ a |solated yields ofcis-cyclopropane. Reactions run with 3:1 ratio of
2 CHy 1/enyneP A: 5% AgOTf, 5% (ArO%PAuCI, CHCly. B: 5% AgSbk, 5%

(ArO)sPAUCI, CHCl,. ¢ Isolated yields? Ratio of regioisomers.Conditions

2 5 (cis:trans) N - .
Conditions : 5% PhaPAUNT, 23 °C, 16 h 21% 23% 21% (0:100) B were not investigated with8, 61, and64.
5% AuCl, -10 °C, 16 h 49% 23% 9% (0:100) .
5% AuCl, -25 °C, 0.25 h 0% 0% 84% (16:1) The substrate scope of the two-step, divergent syntheses of
25% [AuCL(CO)L. 50°C. 160 0% % 54% (@0 fluorenes and styrenes was investigated with other enynes (Table

1)14 Aryl enynes with a variety of substitution patterns and
functional groups were tolerated, demonstrating the power of this
method to prepare multiply substituted arenes from simple starting
materials (entries-113). Moreover, both electron-rich and electron-
poor enynesl4 and 18 undergo the cyclopropanation and arene
syntheses; however, commensurate with the expected nucleophi-
licities of the aryl group, they demonstrated diametric preferences
for styrenes versus fluorene formation (entries 3,4). Alkyl-
substituted enynes are also tolerated in both the cyclopropanation
3 u . y y and annulation steps (entries-146).
Ph 5/;:2: f?(m:nm cis 56/:,?:?_’:,,:?::2 ° O'O ® The carbene precursor was also varied (Table 2). The pivaloate
ester provided the best selectivity in differentiating between the
styrene and fluorene pathways (entries-3). [9,9]-Dibutyl-
Gratifyingly, either compound could be selectively prepared Substituted fluoren&82 was prepared (entry 6); such hydrophobic
simply by changing the silver salt cocatalyst in conjunction with solubilizing groups are often found in fluorenes designed for

Since cyclopropan® was obtained exclusively as thens
diastereomer, we hypothesized ti8atind 4 arose from thecis-
diastereomer. Therefore, we were pleased to find that the less
reactive AuCl cleanly catalyzed the synthesis of cycloprofane
with high cis-diastereoselectivity and complete regioselectivity.
With ready access tois-5, we next investigated its transformation
to 3 and4.

3 89% 4 76%

triarylphosphitegold(l) chloride (A== 2,4-ditert-butylphenyl)!1.12 subsequent polymerization. Additionally, the use of unsymmetrical
Thus, reaction o€is-5 with the Au complex and AgOTf provided  pivaloate83 readily provided85 or 86 (entries 7).

3 in 89% vyield, while the reaction with AgSkRinder otherwise A mechanism accounting for the observed products begins with
identical conditions provided in 76% yield (eq 3):3 the formation of5 by intermolecular cyclopropanation of enyRe
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Table 2. Au(l)-Catalyzed Arene Synthesis: Propargyl Ester Scope

== of

OR 1) 8% AuGL CH,Cl _

Ry Ry 2) Conditions A or B
2
entry propargyl ester cp yield? conditions A®  yield® conditions BY yield®
1 Ro./ R=Piv1 580% 89% 76%
2 Bz67 6882% 3 79% 4 19% (+ 53% 3)
3 1 Ac69 70 60% 81% 57% (+ 32% 3)
= Ph,
4 PVOL_Z i 7280% N 7389% 0’0 7463%
5 \ 475 7683% 0 O 7791% ’ 78 66%
n
)n
. OPivR Ri~ R,
=5 )
1
6 Ry=n-Bu,Ry=n-Pr79 8059% 8177% (8.3:1)° O’ 8284%
7 Ry=cPr,R;=H83 8479% 8572% 86 84%

|R2

a |solated yields ofcis-cyclopropane. Reactions run with 3:1 ratio of
propargyl este®. P A: 5% AgOTf, 5% (ArO}PAuUCI, CHCly. B: 5%
AgSbFs, 5% (ArORPAUCI, CHCl,. ¢ Isolated yieldsd E/Z ratio.

Scheme 1. Proposed Mechanism for the Formation of 3 and 4
OPWv OPiv 5-endo \ _6-endo
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via the gold carbenoid produced from rearrangement of propargyl
esterl. Following coordination of the cationic gold catalyst to the
resulting alkyne, the pendant olefin can participate in either a
5-endadig or 6-endaedig cyclization (Scheme 1). When tertiary
propargyl esters are employed in the gold-catalyzed annulation, the
5-endadig cyclization to generate tertiary carbocat®hdominates.
Subsequent migration of the pivaloyloxy group gives allylic cation
88 that may be further stabilized by delocalization of the charge
onto gold. Cyclopropyl ring opening leads&6 via a pentadientyl
cation, which is most likely converted ®and4 by E1 and {1
mechanisms, respectivel§1é

Use of secondary propargyl pivalog@€ diverted the reaction
pathway toward the @ndodig cyclization and formation of
cycloheptatriened2 (eq 4). Selectivity for thes-endedig path-
way could be partially restored usir@s, which predominantly
provided the fluoren®7, suggesting that, for trisubstituted olefins,
electronic factors govern the regioselectivity of the cycloisomer-
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ization.
OPiv P\vO
PPV sy el £§> 5% (ArO)sPAUCI @
iA, 2 P 5% AngF6 '
90, Ar=Ph 9191% sz 79% 93 20%

94, Ar = 4-OMe-Ph 95 62% 96 23% 97 69%

In conclusion, readily available enynes and propargyl esters may
be selectively transformed into styrenes or fluorenes under catalyst
control via two new Au(l)-catalyzed processes. Synthesized by a
rarely investigated, highly selective cyclopropanation of 1,3 enynes,
cis-vinyl-alkynyl-cyclopropanes undergo a novel cycloisomerization
reaction, the outcome of which may be controlled simply through
the choice of catalyst counterion.
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