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The rearrangement of vinyl allene oxides (1, X=O) is a key
transformation in the metabolic pathway that converts
arachidonic acids into cyclopentenones (3, X=O)
[Eq (1)].[1] These rearrangements can proceed by two distinct

mechanistic pathways:[2] a concerted rearrangement (path a)
involving direct addition of the olefin on the epoxide or a
stepwise mechanism (path b) through a Nazarov cyclization
of an oxypentadienyl cation (2, X=O�).[3] The regioselectiv-
ity of the cyclization is dictated by donation of the oxyanion
into the resulting cation leading to the formation of a ketone.
Recently, stabilization of developing positive charge through
back-bonding from phosphinegold(I) complexes has been
implicated in a number of rearrangement reactions.[4] There-
fore, we hypothesized that coordination of cationic phos-
phinegold(I) complexes to a vinyl allene might mimic these
reaction pathways through similar back-bonding, leading to
metal–carbenoid intermediate 3 (X=R3PAu+).[5] These inter-
mediates would further rearrange into substituted cyclo-
pentadienes, important building blocks in organic and organ-
ometallic chemistry.[6, 7]

In light of our recent success in using [Ph3PAuCl] with
AgSbF6 in dichloromethane for carbon–carbon bond-forming
reactions,[4c] we chose this system for preliminary studies of
the proposed cycloisomerization (Table 1). Treatment of vinyl
allene 4 with 2 mol% cationic triphenylphosphinegold(I)
afforded the desired cyclopentadiene 5 as a single regioisomer
in 97% yield after 1 min at 0 8C (Table 1, entry 1). Similar

results were obtained when a lower temperature or lower
catalyst loading were used (Table 1, entries 2 and 3). Control
experiments employing either 5 mol% [Ph3PAuCl] or
5 mol% AgSbF6 as the sole catalyst did not lead to any
conversion of 4 into 5 (Table 1, entries 4 and 5). Other
transition-metal complexes showed no catalytic activity;
however, gold(III) chloride rapidly consumed 4 to afford a
small amount of 5 (Table 1, entry 6).[8]

With optimal conditions in hand, the scope of the gold(I)-
catalyzed cycloisomerization of vinyl allenes was examined.[9]

We were pleased to find that the reaction allowed for the
regiospecific synthesis of functionalized cyclopentadienes in
high yields with a variety of substitution patterns (Table 2).
Substitution at the allene terminus was well tolerated,
encompassing linear alkyl (Table 2, entries 8 and 9), oxy-
genated (entries 3–7), secondary benzyl (entry 1), and phenyl
substituents (entry 2). Notably, the gold(I)-catalyzed reaction
can be easily carried out on a gram scale albeit with a slightly
diminished yield (Table 2, entry 1). Furthermore, the stability
of acid-labile protecting groups, such as tetrahydropyranyl
(Table 2, entry 9) and silyl ethers (entries 3, 4, 6, and 7),
isopropylidene acetal (entry 5), and an N-Boc amine
(entry 6), is a testament to the mildness of the reaction
conditions. Bicyclic cyclopentadienes are readily produced
from the cycloisomerization of vinyl allenes containing cyclic
alkenes (Table 2, entries 1–6). Additionally, the gold(I)-
catalyzed reaction can be employed for the synthesis of
cyclopentadienes with a quaternary carbon center (Table 2,
entries 2 and 3). The use of a more electron-rich gold(I)
complex, [tBu3PAuCl], as a catalyst gave improved yields for
some vinyl allenes (Table 2, entries 5, 6, 8, and 9). For
example, switching the gold catalyst from [Ph3PAuCl] to
[tBu3PAuCl] resulted in an improved yield for the formation
of cyclopentadiene 21 (Table 2, entry 8).

Table 1: Catalyst optimization.

Entry Catalyst T [8C] t [min] Yield [%][a]

1 2% Ph3PAuCl/2% AgSbF6 0 1 97
2 2% Ph3PAuCl/2% AgSbF6 �20 5 93
3 1% Ph3PAuCl/1% AgSbF6 0 1 96
4 5% Ph3PAuCl 23 180 0[b]

5 5% AgSbF6 0 5 0[c]

6 5% AuCl3 0 5 30[d]

[a] Yield of isolated product after column chromatography. [b] Starting
material was recovered. [c] Decomposition occurred. [d] Determined by
1H NMR spectroscopy against an internal standard (1,2,3-trimethoxy-
benzene).
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In analogy to the rearrangement of allenoxides, the two
mechanistic possibilities shown in Equation (1) were consid-
ered. To distinguish between these potential mechanisms,
gold(I)-catalyzed cycloisomerization of enantioenriched vinyl
allene 10 was examined [Eq. (2)].[10] Treatment of vinyl allene

(S)-10 with 2 mol% [Ph3PAuCl] and 2 mol% AgSbF6 in
dichloromethane at �20 8C for 20 h furnished cyclopenta-
diene 11 in 55% yield and with 0% enantiomeric excess. In
light of recent examples of excellent chirality transfer in gold-
catalyzed additions of nucleophiles to enantioenriched
allenes,[11] the poor chirality transfer observed in the cyclo-
pentadiene synthesis suggests that the reaction does not
proceed through a pathway that involves direct addition of
the olefin on a coordinated allene.[12]

On the basis of this result, a plausible mechanism for this
transformation is proposed in Scheme 1. Coordination of a
cationic phosphinegold(I) to the allene results in the forma-
tion of an achiral pentadienyl cation, 24, that undergoes
electrocyclization to give the cationic intermediate 25.[13]

While regioisomeric cyclopentadienes could be formed

through loss of either of two in-
equivalent protons (Ha or Hb) in
allyl cation 25, only a single regio-
isomer of the cyclopentadiene is
formed. The formation of a sole
cyclopentadiene product is consis-
tent with gold(I)–carbenoid inter-
mediate 26 undergoing an intramo-
lecular 1,2-hydrogen shift,[4b,c]

rather than a mechanism involving
deprotonation/protonation of a
vinyl gold intermediate. This path-
way is further supported by the
observation of complete deuterium
incorporation into [D]-5 and the
lack of crossover in a deuterium-
labeling experiment using vinyl
allenes [D]-4 and 12 [Eq. (3)].

We envisioned that the 1,2-
hydrogen shift in cationic inter-
mediate 26 could be replaced by
alternative reactions. To this end,
we were pleased to find that fully
substituted tricyclic cyclopenta-
diene 28 was generated in excellent
yield by reacting bicyclic vinyl
allene 27 with 2 mol% cationic
triphenylphosphinegold(I) at 0 8C
for 5 min [Eq. (4)]. Additionally,
we were intrigued by the possibility

Table 2: Gold(I)-catalyzed cyclopentadiene synthesis.[a]

Entry Vinyl allene Cyclopentadiene Yield [%][b]

1 6[c] 7[c] 98 (88)[d]

2 8 9 92

3 10 11 63

4 12 13 86

5 14[c] 15[c] 78[e]

6 16 17 53[e]

7 18 19 72

8 20: R=Bn 21 39 (78)[e]

9 22: R=THP 23 87[d]

[a] Reaction conditions: [Ph3PAuCl] (1.0 or 2.0 mol%), AgSbF6 (1.0 or 2.0 mol%), vinyl allene in CH2Cl2
(0.05m), 0 8C, 5 min. [b] Yield of isolated product after column chromatography. [c] 1:1 mixture of
diastereomers. [d] 5.3-mmol scale. [e] [tBu3PAuCl] (2.0 mol%) was employed. TBS= tert-butyldimethyl-
silyl, TBDPS= tert-butyldiphenylsilyl, Boc= tert-butyloxycarbonyl, Bn=benzyl, THP= tetrahydropyranyl.

Scheme 1. Proposed mechanism for gold(I)-catalyzed cyclopentadiene
synthesis.
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of trapping the cationic intermediate through intramolecular
addition of a pendant nucleophile. To examine this possibility,
vinyl allenes 29 and 30 bearing a primary alcohol were
subjected to the conditions of the gold(I)-catalyzed reaction.
While the gold(I)-catalyzed reaction of 29 bearing a hydrogen
at the allene terminus afforded cyclopentadienyl carbinol 31
as the sole product in 77% yield, the reaction of 30 bearing a
methyl group at the allene terminus led to the formation of
tetrahydrofuran derivative 32 [Eq. (5)].

In conclusion, we have developed a gold(I)-catalyzed
cycloisomerization of vinyl allenes for the synthesis of
cyclopentadienes. The mild reaction conditions of this
gold(I)-catalyzed carbon–carbon bond-forming reaction pro-
vide a regiospecific method for the synthesis of highly
functionalized cyclopentadienes, including tricyclic structures
through a tandem cycloisomerization/ring-enlargement reac-
tion sequence. Application of the gold(I)-catalyzed reaction
to the preparation of optically active metallocenes and
asymmetric catalysis is ongoing in our laboratory and will
be reported in due course.
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