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The biology and engineering of stem-cell control
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There is significant interest in studying stem cells,
both to elucidate their basic biological functions during
development and adulthood as well as to learn how
to utilize them as new sources of specialized cells for
tissue repair. Whether the motivation is basic biology
or biomedical application, however, progress will hinge
upon learning how to better control stem-cell function
at a quantitative and molecular level. There are several
major challenges within the field, including the iden-
tification of new signals and conditions that regulate
and influence cell function, and the application of this
information towards the design of stem-cell biopro-
cesses and therapies. Both of these efforts can signi-
ficantly benefit from the synthesis of biological data into
quantitative and increasingly mechanistic models that
not only describe, but also predict, how a stem cell’s
environment can control its fate. This review will briefly
summarize the history and current state of the stem-
cell biology field, but will then focus on the develop-
ment of predictive models for stem-cell control. Early
models formulated on the assumption that cell fate
was decided by stochastic, cell-intrinsic processes have
gradually evolved into hybrid deterministic–stochastic
models with increasingly finer molecular resolution
that accounts for environmental regulation. As our
understanding of cellular control mechanisms expands
from the cell surface and towards the nucleus, these
efforts may culminate in the development of a stem-
cell culture programme, or a series of signals to pro-
vide to the cells as a function of time to guide them
along a desired developmental trajectory.

Introduction

A stem cell is defined as a clonal precursor of more
identical stem cells, as well as specialized or differentiated
progeny cells of one or more defined types. Whether one
is considering stem cells that comprise an embryo develop-
ing into an adult organism, or cell niches residing in various
tissues of the adult, stem cells are subjected to a wide
variety of control mechanisms. In particular, a number of

their functions or decisions, including survival, death, pro-
liferation, migration, lineage commitment and differentiation,
are tightly regulated by processes that are slowly being elu-
cidated [1–4]. In the fields of tissue engineering and
regenerative medicine, progress in harnessing these cells
to repair tissue damaged by disease or trauma will rely upon
gaining a deeper understanding of these regulatory mech-
anisms. Furthermore, fundamental cell and developmental
biology will benefit from elucidating the control mechanisms
that translate extracellular information into intracellular
decisions. We will first review the history and considerable
recent progress in the identification and characterization of
various stem-cell classes, but will then focus on the need to
gain a deeper understanding of both the cell-extrinsic and
-intrinsic mechanisms that control these cells at a molecular
and quantitative level.

History and recent progress
of ‘stemness’

Stem cells were first identified in mouse bone marrow in
the 1960s by Till, Becker and colleagues, who observed that
single cells could give rise to all haematopoietic lineages
in vivo [5,6]. Simultaneously, Altman and colleagues pre-
sented evidence for the generation of new neurons in
the adult brain [7,8], work that presaged the more recent
discovery of adult neural stem cells [9–11]. A subsequent set
of major advances came with the identification of pluripotent
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stem cells, which give rise to all cell types of the adult
organism. In 1974, Evans and colleagues (see, e.g. [11a]) gen-
erated embryonic carcinoma cells from reproductive-tissue
tumours and found they could develop into cells from each of
the embryonic germ layers: ectoderm, mesoderm and endo-
derm. In addition, in 1981, pluripotent mouse ES (embryonic
stem) cells were derived from normal tissue, namely an
early-stage embryo [12]. This activity in the stem-cell field
over the past several decades has recently escalated into
several major advances. These include substantial progress
in the identification of numerous signals that control stem-
cell fate, the discovery of robust adult neurogenesis, and the
derivation of pluripotent human stem cells.

Haematopoietic stem cells

As they were the first stem-cell population discovered, many
paradigms of stem-cell biology, as well as techniques for
the analysis of cell properties and functions, were originally
formulated in HSC (haematopoietic-stem-cell) systems. A
stem cell was first defined as a clonal cell capable of both
self-renewal and repopulation of a range of terminally dif-
ferentiated cells of the haematopoietic system. LT-HSCs
(long-term HSCs) are capable of permanently reconstituting
all the haematopoietic lineages in an organism. These cells
can differentiate into shorter-term haematopoietic pro-
genitors, which then develop into the more lineage-
restricted myeloid and lymphoid progenitor cells. These
multipotent progenitors have the capacity for short term
self-renewal, but they eventually differentiate into specific
lineages, the former into the myeloid lineages (erythrocyte,
megakaryocyte, granulocyte and monocyte) and the latter
into lymphoid fates [B-cells, T-cells, NK (natural killer) cells
and dendritic cells].

Stem cells are therefore faced with a hierarchical,
branching decision tree (Scheme 1a). As discussed in greater
detail below, these decisions were initially thought to
be controlled stochastically, but more recent advances in
molecular and cellular biology have led to the identification
of extrinsic signalling factors that influence many of these
fate choices. Although LT-HSCs are difficult to culture for
long periods of time in their immature state, several factors
and cytokines that promote their proliferation or self-
renewal have been identified, including SlF (steel factor),
IL-3 (interleukin-3), thrombopoietin, Flt3 ligand, Wnts,
Notch and Shh (Sonic Hedgehog) [13–15]. Furthermore,
factors that influence their conversion from HSCs into
common myeloid-versus-lymphoid progenitors [e.g. GM-
CSF (granulocyte/macrophage colony-stimulating factor)]
and from progenitors towards terminally differentiated cell
phenotypes [e.g. G-CSF (granulocyte colony-stimulating
factor) and M-CSF (macrophage colony-stimulating factor)]

Scheme 1 Hierarchical branching decision tree (a) and developmental
pathways (b)

(a) The life of a stem cell can be viewed as a hierarchical branching process
where the cell is faced with a series of fate switches. The goal of stem cell
bioengineering is to provide the cells with the proper signals as a function
of time to guide them down a particular developmental trajectory. (b) The
developmental pathways available to a neural stem cell include quiescence,
death, self-renewal, and differentiation down a number of lineages.

have been identified. Commitment of LT-HSCs to differen-
tiation, however, may be related both to the presence
of factors that regulate differentiation as well to the signalling
dynamics of the factors that promote self-renewal [16]. In
any case, the mechanisms by which all such factors influence
and regulate cell behaviour and function are complex, and,
as discussed below, a quantitative and mechanistic analysis
can yield a deeper understanding of the processes of self-
renewal, lineage commitment and differentiation.

In addition to being the first stem cells discovered,
HSCs were also the first to successfully be utilized thera-
peutically. For decades, bone-marrow transplants and
peripheral-blood transfusions have been used in the treat-
ment of leukaemias, other cancers and inherited blood
disorders [17]. Furthermore, protein drugs such as eryth-
ropoietin, GM-CSF, and G-CSF stimulate haematopoietic
progenitor cells into repopulating the blood system of
patients undergoing chemotherapy and radiotherapy, or for
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other conditions resulting in anaemia [18,19]. Further thera-
peutic progress may result from an improved understanding
of the mechanisms by which such factors control HSC self-
renewal, differentiation and lineage commitment.

Adult neural stem cells

As discovered earlier for blood, populations of adult stem
cells have been discovered in a growing numbers of tissues,
including heart [20], skeletal muscle [21], liver [22], skin [23],
brain [8–10,24] and spinal cord [25,26]. Since millions suffer
from neurodegenerative disorders such as Alzheimer’s,
Parkinson’s and Huntington’s diseases, the biology and
therapeutic potential of neural stem cells are of significant
interest [27,28]. As mentioned above, Altman in the early
1960s, and then Kaplan et al. in the 1970s, found evidence
that new neurons are generated in several regions of the
adult brain, in particular the hippocampus and a region lining
the lateral ventricle of the forebrain, known as the sub-
ventricular zone. That is, just as HSCs reside within niches
in adult bone marrow, neural-stem-cell niches exist in
the CNS (central nervous system). In the early 1990s,
proliferating populations of cells were isolated from these
regions and were shown to have the hallmarks of stem
cells, including self-renewal and differentiation into the three
major cell lineages of the nervous system both in vitro and
in vivo: neurons, astrocytes and oligodendrocytes [9–11,
29,30]. As with HSCs, extracellular signalling factors regulate
adult neural-stem-cell self-renewal and differentiation fate
choices [9,11,31–35].

The therapeutic application of neural stem cells has
enjoyed preliminary success. For example, the cerebral
implantation of adult neural progenitor cells following their
expansion in culture has led to a significant reduction
in demyelination and axonal loss in an animal model of
multiple sclerosis [36]. Also, grafting an embryonic neural-
stem-cell line at the site of spinal-cord damage resulted in
impressive functional recovery [37]. Finally, we have used
gene delivery of the factor Shh to directly control and
stimulate the proliferation of endogenous neural stem cells
in the adult brain [38], a result with potential implications
for Alzheimer’s-disease therapy.

ES cells

While adult stem cells have demonstrated unexpected de-
velopmental potential, at the present time, embryonic and
germ stem cells are by far the best characterized and val-
idated pluripotent cell population. ES cells are derived from
the inner cell mass of the blastocyst stage of the embryo,
and these pluropotent cells are capable of differentiating into
every cell in the body (with the exception of extraembryonic
membranes such as the placenta) [12]. The ES cell is there-

fore a derived cell line whose actual relationship to endo-
genous stem cells in a developing embryo is not entirely
clear. That said, during the first two decades of their ex-
istence they have proved enormously useful in the creation
of transgenic mice for basic genetic studies on the roles of
specific genes in animal development and physiology [39]. In
recent landmark work, pluripotent human embryonic and
germ cells have also been derived [40,41]. In parallel with
the development of culture protocols and media recipes that
promote lineage-specific ES-cell differentiation, a number
of studies have begun to explore the broad developmental
promise of ES cells for therapeutic efforts.

The previous examples with adult stem cells indicate
that numerous tissues in the body contain the signals
necessary to guide at least a fraction of these cells towards
a needed lineage. However, ES cells often need to be dif-
ferentiated in culture prior to implantation, particularly if
the target cell phenotype is one not ordinarily renewed or
repopulated in the adult. Jessell and colleagues recently used
a combination of inductive signals, retinoic acid and Shh,
to drive ES-cell differentiation into motor neurons [42].
That work has significant promise for the treatment of
spinal disorders, such as amyotrophic lateral sclerosis (Lou
Gehrig’s disease) and spinal injury. In addition, landmark
studies by McKay and colleagues have shown that ES cells
can be coaxed to differentiate into dopaminergic neurons
for potential Parkinson’s-disease therapy, insulin-secreting
cell clusters similar to islets for diabetes therapy, and oligo-
dendrocytes for remyelination of neurons [43–45]. While
this and other groundbreaking work [46–49] is highly pro-
mising, the methods used to differentiate the cells are
most often determined empirically and are not always highly
efficient. Further optimization will therefore be required.

To translate the therapeutic promise of stem cells into
clinical practice, two goals must be met. First, we must
learn at a fundamental and quantitative level how to mani-
pulate and control these cells. Secondly, processes must
be developed to implement stem-cell control at a clinical
scale. Several important studies and reviews have already
discussed the development of bioreactor processes for
stem-cell expansion [50–53]. Therefore, for the remainder
of this review, we will discuss how progress towards the
understanding of stem-cell control at a quantitative, mole-
cular and mechanistic level can enhance our abilities to
harness them for therapeutic endeavours.

The biology and engineering
of stem-cell control

Numerous examples above illustrate the principle that stem
cells have the potential to differentiate into particular cellular
phenotypes; however, precise control must be exerted over
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the processes of stem cell proliferation and differentiation
for numerous reasons. First, whereas it is highly encouraging
to demonstrate that it is possible for a stem cell to develop
into a particular target cell type, large numbers of target cells
are often necessary for an actual therapeutic effect. Secondly,
for both economic and regulatory purposes, highly robust
biochemical engineering processes must be developed to
expand, bank and, in some cases, partially differentiate stem
cells for tissue-engineering applications. The success of these
processes will hinge upon the ability to precisely control
stem-cell function and fate. Thirdly, it is important to gain
tight control over stem-cell differentiation to avoid adverse
side effects during stem-cell therapy. For example, implant-
ation of fetal neural tissue into Parkinson’s-disease patients
ameliorated the symptoms of some patients in recent clinical
trials [54]. However, the inability to control this immature
tissue actually made the symptoms of several patients worse.
As a second example, undifferentiated ES cells generate
benign tumours (teratomas) in vivo, so certain populations
of undifferentiated cells should not be present in a cell graft.
Finally, understanding the mechanisms that control stem-
cell fate can significantly enhance basic stem-cell biology
efforts to understand the functional importance of these
cells during development and adulthood.

It is therefore highly desirable to understand how to
control stem-cell function. However, initial work in the field
supported the view that stem cells could not actually be
externally controlled, i.e. that self-renewal, differentiation
and lineage commitment were purely cell-intrinsic stochastic
processes. Fortunately, the advent of molecular biology
and genetics, particularly the discovery of growth factors,
cytokines, morphogens and adhesion factors, has enabled
numerous studies that have increasingly demonstrated that
stem-cell fate is also extrinsically regulated. For example,
there are numerous levels of regulation for adult neural
stem cells in the brain, indicating that their tight control
is important for adult CNS function, a subject we have
reviewed recently [55]. Therefore, over the past several
decades, mathematical models have evolved in parallel with
the biology, from purely stochastic formulations to hybrid
models with increasing levels of molecular regulation. The
latter models not only describe cell-culture composition,
but may also be useful in optimizing culture conditions that
achieve desired cell phenotypes for the design of stem-cell
bioprocesses. The biological assumptions and mathematical
formulations underlying the several major classes of models
that have evolved since the initial discovery of stem cells in
the 1960s will be discussed. Furthermore, we will propose
several future directions in molecular models of stem-cell
control, specifically the incorporation of increasing levels
of molecular mechanism as our understanding of stem-cell
biology gradually progresses from the cell surface to the
nucleus.

In addition to their different mathematical formulations,
the models attempt to describe and predict different aspects
of stem-cell function. First, models can be developed to des-
cribe the fate of single cells or of an entire cell population,
that is, what fractions of cells within the population adopt
alternate fates. The latter models are well suited to studying
an expanding cell population and situations in which the cells
within the population influence one another’s behaviour,
i.e. feedback. A second distinction is between models that
analyse the decision for stem-cell self-renewal versus dif-
ferentiation into a specialized phenotype, and models that
examine lineage commitment, i.e. the cells’ choices among
different possible phenotypes once it has chosen to differen-
tiate.

Purely stochastic models

The life of a stem cell can be conceptualized as a hierarchical
branching process (Scheme 1a) in which a stem cell faces
progressive decision points or ‘switches’, each of which
carries the cell closer to its eventual fate. We would there-
fore propose that the goal of stem-cell bioengineering
is to exert precise and quantitative control over these
switches and thereby guide the cells towards a desired out-
come. However, the decisions in this branching process may
be governed either by environmental, extrinsic cues in a de-
terministic manner, or by random, cell-intrinsic mechanisms
in a stochastic manner. Early work in the field, and even
some recent work, favoured the view that stochastic
events dominate stem-cell decisions.

Purely stochastic models of stem-cell behaviour assume
that there is no environmental influence on stem-cell fate
and that cells adopt their fates as a result of unknown
random fluctuations intrinsic to the cell. These models were
compared with experimental results to derive the intrinsic,
fixed probabilities for stem-cell self-renewal, i.e. mainte-
nance in an immature state versus differentiation into
a mature phenotype. The earliest such models were
developed for HSCs in the 1960s [56–58]. These models
were based largely upon early experiments in which
animals were sublethally irradiated to eliminate their endo-
genous haematopoietic system, and exogenous HSCs were
subsequently grafted into their spleens to generate cell
colonies. These colonies could then be excised, dissociated
into single cells and implanted into a second animal to
gain information on the composition of the first colony. It
was observed that the number of colonies formed [or CFU
(colony forming units)] in successive generations was highly
variable, but could be fitted with a gamma probability
distribution. Till and colleagues [56–58] showed that the
observed results of these colony-forming assays could be
explained using a stochastic computer simulation in which
the HSCs had a self-renewal probability 0.6 and a probability
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to differentiate of 0.4. This early model, termed HER
(haematopoiesis engendered randomly), did not account for
cell death or distinguish between various mature phenotypes
or the choice of cell lineage. Interestingly, a steady-state
number of HSCs should be reached only if the self-renewal
probability is 0.5, so even these very first studies provided
evidence against purely stochastic fate choices, as the
environment of an irradiated animal apparently modulated
and increased the probability for HSC proliferation to 0.6.

That work inspired numerous second-generation sto-
chastic stem-cell models. To analyse HSC function under
better controlled conditions, Metcalf and others developed
techniques to clonally expand and quantify HSC cell differen-
tiation in vitro [59,60], and the resulting data were compared
with those obtained using stochastic models. As with
Till, McCulloch and Siminovitch’s early in vivo experiments
[56–58], empirical probabilities of self-renewal or differen-
tiation in these cultures closely fit a gamma distribution
[61–65]. Nakahata and others showed that applying the
stochastic hypothesis yielded an ≈ 60% probability of self-
renewal and ≈ 40% chance for differentiation in their partic-
ular culture conditions [61,64], the same values measured
by Till and colleagues [56–58] in vivo. Since the statistical
probabilities of differentiation were similar in vivo and in vitro,
the HER hypothesis was strengthened.

In addition to analysing the commitment to differenti-
ation, considerable work has been focused on determining
whether lineage selection (i.e. which mature phenotype a cell
chooses once it decides to differentiate) is also determined
stochastically. Despite similar culture conditions, single
HSCs can exhibit wide variations in fate choices. Specifically,
numerous studies found that a variety of different lineage
combinations could be generated by cells of the same origin,
and the actual numbers of cells of each lineage produced
from a single cell also showed a random distribution [66–69].
On the basis of these results, it was believed that stochastic
processes governed both the decision to self-renew versus
differentiate as well as lineage commitment choices.

Deterministic influences on
stem-cell-fate choice

HSCs were identified at a time when the general importance
of growth factor and cytokine activities had not yet em-
erged – only a few years after the Nobel-Prize-winning dis-
covery of epidermal and nerve growth factors by Stanley
Cohen and Rita Levi-Montalcini [70]. Despite the pro-
minence of the purely stochastic hypothesis of stem-cell
fate choice, several pieces of evidence began to weaken
it and to favour environmental regulation. First, HSC
colonies that formed in the splenic capsule in vivo were
predominantly white blood cells, whereas those generated in

the pulp consisted of red blood cells [71], a result indicating
that the cellular microenvironment played a role in their
fate choice. Next, it was discovered that treating separated,
but clonal, HSC daughter cells with different growth factors
significantly impacted the lineage of their progeny [72,73].
These results gave rise to a deterministic hypothesis that,
in contrast with HER, was called HIM (haematopoietic
inductive microenvironment) [74].

Stem cells have since been shown to exist in regulated
microenvironments, or ‘niches’, throughout the adult orga-
nism. Some default to a quiescent resting state, the
Go-phase of the cell cycle, and are activated only by micro-
environmental changes, specifically proliferative or differen-
tiative cues [32,75]. Others maintain a low-level, steady
rate of self-renewal to maintain the stem-cell population.
In either case, the niche microenvironment supports self-
renewal and restricts differentiation [76]. These locations in-
clude the haematopoietic stroma, the proliferative regions
of the adult brain (the subventricular zone and perivascular
niches of the dentate gyrus) and the intestinal crypt.

Therefore the processes of self-renewal, differentiation
and lineage commitment are regulated by an increasing num-
ber of identified growth factors, cytokines, hormones and
extracellular-matrix factors. The cell biology of receptor–
ligand dynamics and trafficking [77,78], cell adhesion and
signal transduction [79] therefore applies to stem-cell func-
tion. In addition, there has been early progress in elucidating
how these signals elicit intracellular gene regulatory changes.
Commitment of a stem cell to a given fate causes the
decreased expression of specific genes, some of which are
associated with their multipotent nature, and an increase in
others that may be associated with a differentiated pheno-
type. The former include several key stem-cell transcription
factors that are known, for example, in the haematopoietic
and nervous systems [80–83], but other stem-cell specific
factors remain to be identified.

It is also crucial to note that, in addition to specific sig-
nalling factors, cell-culture parameters also profoundly influ-
ence stem-cell fate. For example, oxygen pressure has been
found to be important for the in vitro behaviour of haema-
topoietic [84] and embryonic neural stem-cell cultures
[85,86]. Also, important work has shown that cell inocul-
ation conditions and pH can influence neural stem-cell state
([87]; E. Abranches, A. O’Neill, J. M. Cabral and D. V. Schaffer,
unpublished work). Future experimental and modelling
efforts should further explore the effects of O2, pH,
nutrients and cell density on behaviour.

Instructive versus selective regulation

With an enhanced understanding of stem-cell biology
and the increased evidence of extrinsic influences on
stem-cell fate choice, the original debate of stochastic effects
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versus deterministic (HER versus HIM) effects shifted into
a dialogue about the type of influence these environmental
factors exert on stem-cell fate choice. With the available
evidence, a case can be made for either an instructive or a
selective role for extrinsic factors in stem-cell fate choice
[74,75,89].

The instructive view proposes that the decision to dif-
ferentiate, as well as the lineage of the daughter cells are de-
termined by microenvironmental signals (reviewed in [73]).
That is, a specific external factor or combination of factors
initiates the intracellular events necessary to allow differenti-
ation into a specific cell type. As one illustrative example,
Borzillo et al. [90] presented evidence that the ectopic
expression of the M-CSF receptor in a pre-B-cell line biased
cell lineage outcome from a lymophoid fate to a macrophage
fate. In addition, as discussed below, there are also many
instructive examples for neural stem cells [91–96].

Alternatively, extrinsic factors may serve only a select-
ive function, in which cells commit to differentiation into
various lineages by some rigid statistical distribution, and
the environmental factors selectively support the survival or
proliferation of only specific phenotypes (reviewed in [89]).
As one example supporting this view, Stoffel and colleagues
[97] generated a mouse in which the intracellular domain of
the thrombopoietin receptor (mpl) was replaced with the
G-CSFR (G-CSF receptor) intracellular signalling domain.
If the G-CSFR actually instructed cell lineage choices,
thrombopoietin would be predicted to instruct cells away
from a platelet fate and towards the granulocyte phenotypes
induced by G-CSF signalling. In contrast, the resulting mice
had normal platelet counts, indicating that the G-CSFR
domain appeared to support cell survival rather than instruct
a specific cell fate.

It appears that growth factors may signal instructively
or selectively in different circumstances, and the net result of
either mode is qualitatively similar: the stem-cell population
is biased towards one or another mature cell type. However,
to design predictive models of stem-cell culture control, it
will be important to distinguish between these alternatives
in the future.

Hybrid stochastic–deterministic
models

The acknowledgement that cell extrinsic factors influence
commitment to differentiation as well as lineage selection
has spurred the development of models with both deter-
ministic and stochastic aspects. In these hybrid models,
cellular decisions, in particular exit from the cell cycle and
lineage choice, are still determined by a probability distri-
bution. However, the probabilities of each choice are
weighted according to environmental factors, such as cell

density or the presence of a growth factor. Initial models
lacked mechanistic molecular detail of the microenviron-
mental effects, but were able to capture their empirical
influence on the cell population.

Agur et al. [98] recently developed a generic discrete
model for stem-cell self-renewal for bone-marrow cells.
This model melds a cell-intrinsic ‘clock’ that stochastically
determines the decision to differentiate with a negative-
feedback control element to account for effects of the
microenvironment. This proposed control system maintains
a steady-state HSC level and exhibits robustness when chal-
lenged with large perturbations, both hallmarks of homo-
eostasis. The authors of this model contend that its
architecture is sufficiently generic that its conclusions can
be extended to all stem-cell populations residing in a
heterogeneous environment.

In addition to analysing stem-cell self-renewal versus
differentiation, stochastic–deterministic models have been
formulated to study lineage commitment. Some are based
on the original Till et al. [56] stochastic model, but add
deterministic elements [74,99]. Blackett and colleagues
[74,99] hypothesized that variability in cell-cycle state is
one source of cell-intrinsic stochasticity. An otherwise-
homogeneous population of stem cells enters the cell cycle
from G0 at times chosen by a probability distribution, leading
to heterogeneity in the experimental outcome. However,
they proposed that the G0 exit probability distribution
could be influenced by microenvironmental factors, i.e. a
biased probability. In another study, Solberg [100] developed
a progressive stochastic model that acknowledged the
influence of cytokines on megakaryocyte maturation from
progenitor cells. This influence is manifested as a depen-
dence of the probability of transition from progenitor to
megakaryocyte on colony size (which is presumably propor-
tional to autocrine/paracrine cytokine signalling). This
simulation was able to recapitulate heterogeneity in mega-
karyocyte maturation stages within a population.

Models have also benefited from recent technological
advances that have yielded improved data on stem-cell
behaviour [101–104]. Using fluorescent dyes to track
individual cells and their progeny, the kinetics of HSC lineage
progression was measured [104]. In one model based on
such data, cell-cycle progression was partitioned into two
compartments. The stochastic compartment described the
exit of cells from the G0 cell-cycle phase according to a
probability distribution dependent on the number of cells in
the compartment. The deterministic compartment accounts
for the effects of extrinsic factors on lineage progression and
apoptosis. Together, these two components could recapitu-
late a heterogeneous cell population response by accounting
for each cell individually.

Another cell-differentiation and lineage-commitment
stochastic–deterministic simulation was created to study
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neural stem cells. O-2A (oligodendrocyte type-2 astrocyte
progenitor cells) differentiate into oligodendrocytes in
response to certain extracellular stimuli [105]. This oligo-
dendrocyte differentiation appears to be synchronized, but
the fraction of oligodendrocytes generated from a single
clone is sensitive to environmental cues. Yakovlev, Noble
and colleagues [106–111] developed a series of models to
describe O-2A behaviour. The first-generation model aimed
to determine whether O-2A undergo symmetric or asym-
metric division [106,107]. In this model, the cells undergo
a critical number of symmetric divisions (which varies from
cell to cell by a random distribution) before being allowed
to differentiate into oligodendrocytes based on a statistical
distribution dependent on environmental factors (namely,
thyroid hormone). The model was refined to incorporate
cell-cycle history, which improved its fit to experimental data
[110]. Additional improvements to the stochastic simulation
were made using random-walk partial likelihood functions
[108] and other stochastic optimization methods [109] to
capture better the heterogeneity observed experimentally
in the critical cycle number. The most recent model revisions
have replaced the critical cell-division parameter with a
gradually increasing probability of differentiation [111].

Signalling thresholds

The above models account for extrinsic signal control over
stem-cell fate by empirically expressing the probabilities of
alternate cell-fate choices as functions of external signal
concentrations or other environmental conditions. The next
level of building cell-biological mechanistic information into
stem-cell models has been to incorporate the concept of
signalling thresholds into cell-fate choices. The idea of thres-
hold responses originated with the observation of spatial
pattern formation during development in numerous systems,
including Drosophila segmentation and wing formation,
vertebrate limb patterning and spinal-cord development.
Francis Crick [112] first proposed the concept that the
diffusion of a soluble signal could establish a concentration
gradient, and cells within the gradient could adopt alternate,
‘all-or-none’ fates at critical threshold levels of the signal.

In support of the threshold concept, there are nu-
merous experimental studies in which manipulating signal
concentrations modulates or ‘flips’ stem-cell fates. For ex-
ample, the morphogen Shh patterns the developing verte-
brate spinal cord and limb bud by establishing a spatial
gradient, and stem cells within this gradient switch between
alternate fates at critical concentrations [96,113]. Shh
controls ventral spinal-cord development, such that floor
plate cells form at high Shh concentrations, motor neurons
at intermediate concentrations and interneurons at low
concentrations. We have recently demonstrated that Shh

also regulates adult neural-stem-cell function in vitro and
in vivo, specifically adult neural-stem-cell proliferation
[33,38], and below we will discuss a gene-regulation network
model that describes the mechanism of threshold responses
to this key factor. Threshold levels of signal concentrations
also regulate haematopoietic progenitor cells. Zandstra et al.
[16] found that moderate cytokine concentrations were
sufficient to promote haematopoietic-progenitor-cell sur-
vival and proliferation, but high concentrations were neces-
sary for the maintenance of LT-HSC activity.

In addition to manipulating the level of the external
signalling factor, modulating the expression of its receptor
in stem cells to amplify signalling can also alter cell-fate
choices. Lillien [91] used a retroviral vector to overexpress
the EGFR [EGF (epidermal-growth-factor) receptor] in
retinal progenitor cells in vitro and in vivo. The transduced
cells were sensitized to the ligand TGFα (transforming
growth factor-α), and their differentiation was consequently
biased away from rod photoreceptors and towards Muller
glia. Furthermore, other work has analysed intracel-
lular signal-transduction mechanisms responsible for amp-
lifying signal differences into alternate cell responses. PC12
neural cells normally proliferate in response to EGF, which
induces a transient MAPK (mitogen-activated protein
kinase) signal, and differentiate into neuron-like cells due to
nerve-growth-factor signalling, which stimulates sustained
MAPK activation. Overexpression of the EGFR or
insulin receptor led to sustained MAPK signalling upon
addition of EGF or insulin, resulting in cell differentiation in
response to these amplified signals [92,93]. Therefore, shift-
ing the number of cell-surface receptor–ligand complexes
through a critical threshold, by changing either the concen-
tration of the ligand or the receptor, can alter cell fate.

This concept of thresholds of cell-surface receptor–
ligand complexes in cellular developmental decision-making
has recently been incorporated into an elegant math-
ematical model for ES-cell self-renewal. Viswanathan et al.
[3] found that two cytokines that support ES-cell pro-
liferation, namely LIF (leukaemia inhibitory factor) and HIF-6
(hyperinterleukin-6), differ in their ability to maintain stem-
cell self-renewal. Mathematical modelling led to the con-
clusion that this difference in the population probability of
self-renewal resulted from different steady-state levels of re-
ceptor–ligand signalling complexes in the presence of the
two factors.

Systems-biology views of stem-cell
signal transduction and gene regulation

Numerous studies have demonstrated the concept that
threshold levels of extrinsic signals bias cell-fate decisions,
and one example has showed that this key external signal
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concentration is correlated to a threshold transcription-
factor activation level [114]. We would therefore propose
that the next generations of models of stem-cell fate control
will likely progress from the cell surface to the nucleus to
account for and predict the mechanistic genomic events that
underlie critical cell-fate choices.

For stem cells faced with a branching series of very
distinct, critical choices (Scheme 1a), there are two import-
ant questions. First, which signalling and gene-regulatory
structures are capable of amplifying small differences in
input signals into critical differences in cell state? Secondly,
to what extent are these critical choices governed by
extrinsic signals versus intrinsic stochastic effects; that is,
do stochastic effects place an inherent limit on our ability to
control stem cells?

A number of studies from outside the stem-cell
field address the first question and indicate that certain
properties in both signal-transduction cascades and gene-
regulatory networks can generate a biological switch, i.e.
a structure that flips between alternate fates as a function
of an input signal level. Non-linearity combined with positive
feedback in a cytoplasmic signal-transduction network can
yield an ultrasensitive system capable of switching states in
response to a small change in an input signal. For example,
Xenopus oocytes can translate very small differences
in progesterone concentration into critical all-or-none fate
choices. Ferrell and Machleder [115] showed that MAPK
was involved in this switch, as its rapid activation in
response to progesterone was equivalent to that of an
enzyme with a Hill coefficient (h) equal to 35. This ultra-
sensitivity was due to a protein-synthesis-dependent positive
feedback loop containing the MAPK signalling pathway.
Similarly, in fibroblasts, Bhalla et al. [115a] demonstrated in
fibroblasts that the MAPK cascade can exhibit bistable states.
Theoretical analysis indicated that this behaviour could be
due to a positive signal-transduction feedback loop in which
MAPK led to PKC (protein kinase C) activation, which fed
back to yield further MAPK activation.

In addition, moving from the cytoplasm to the nucleus,
gene-regulatory networks can also exhibit motifs and
structures that amplify small differences in an extrinsic signal
into all-or-none state choices, again by employing a combin-
ation of non-linearity and positive feedback. For example,
theoretical work in the 1970s demonstrated that a hypo-
thetical autoregulatory transcription factor – one that binds
to, and transcriptionally up-regulates, its own promoter –
could yield a bistable switch [116–118]. This concept was
recently experimentally validated in yeast with a synthetic
autoregulatory loop composed of an rtTA (tetracycline
transactivator) transcription factor, which is activated by
the addition of tetracycline, placed in front of a promoter
containing rtTA binding sites. The resulting system exhibited
switching between two stable states as a function of the

tetracycline concentration [119]. Switching behaviour was
also observed in Escherichia coli with a synthetic gene circuit
composed of two mutually repressive transcription factors
[120].

Shh control of neural-stem-cell fate

It has been theoretically determined with hypothetical
transcription factors, and experimentally demonstrated with
a synthetic gene circuit, that autoregulatory transcription
factors can yield bistable switches. We have applied this
concept to transcription factors that control stem-cell fate
to examine the possibility that bistability in a series of gene-
regulation networks may underlie the critical cell-fate
choices a stem cell traverses as it proceeds from self-renewal
through differentiation into a specialized phenotype
(Scheme 1). In support of this hypothesis, there are nu-
merous examples of autoregulatory transcription factors
that play important roles in cell-fate decisions. These
include the Shh-responsive transcription factor Gli1 [121],
numerous important transcription factors in Drosophila
development [122–124], the factor Pax6 crucial for eye de-
velopment [125], the key developmental homoeodomain
factor Hox4a [126], the factor Pit-1 involved in pituitary-
gland development [127], members of the GATA trans-
cription-factor family critical in HSC regulation [128,129],
the factor EBF (early B-cell factor), which controls
B-lymphocyte differentiation [130], and many others
[131–133].

We have recently developed a gene-regulation-network
model that predicts stem-cell responses to the extracellular
concentration of the signalling factor Shh [33]. Two genes
lie at the heart of the Shh gene regulation circuit. Gli1 is
a transcription factor activated by a Shh signal, and the gli1
gene contains numerous Gli binding sites within its own pro-
moter, i.e. it is a source of positive feedback in the system.
Secondly, Gli1 also binds to, and up-regulates, the expression
of Patched, a suppressor of Shh signalling, to yield a negative
feedback loop. We used both deterministic and stochastic
analysis to determine how this recursive feedback loop
structure processes a Shh signal. Bifurcation analysis of
deterministic differential equations revealed that the system
exhibits bistability; that is, at a key Shh concentration, the
circuit flips from a low- to a high-Gli1-concentration state.
This behaviour may underlie the ability of Shh to switch
stem-cell behaviour at a critical Shh threshold [38,94].

However, recent theoretical and experimental work,
mainly in prokaryotes, has demonstrated that a deterministic
description is not entirely appropriate for many regulatory
circuits [134–137]. Transcription and other regulatory fac-
tors are often present at low concentrations, which can
translate to fewer than several hundred molecules per cell.
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As a result, deterministic chemical-reaction-rate formul-
ations used in differential equation models are inaccurate,
and stochastic methods must be employed. Random
fluctuations in biochemical reactions can therefore generate
noise in the concentrations of key signalling and transcription
factors, and the resulting stochastic effects can potentially
introduce an element of randomness into the genetic circuits
that control stem-cell fate choices. In other words, these
stochastic effects may undermine the ability of extrinsic
signals to deterministically control stem-cell function.

Furthermore, as discussed above, positive transcrip-
tional feedback loops are ubiquitous in developmentally
crucial transcription factors, including Gli1, and positive
feedback loops can destabilize systems by amplifying noise.
For regulatory circuits to maintain tight control over cell
function, it would therefore be reasonable to hypothesize
that they contain mechanisms to reduce noise, and one
mechanism with the capacity to stabilize control systems
is negative feedback [138,139]. We therefore conducted
stochastic simulations of the Shh gene-regulatory network
and showed that Gli1 up-regulation of Patched, a negative
regulator of Shh signalling, dampens noise within the system.
Therefore the Gli1 positive feedback loop provides switch-
like behaviour to the circuit, while the Patched negative
feedback loop counteracts circuit noise to reduce stochastic
effects and maintain the ability of Shh to tightly regulate
stem-cell function [33].

It is our long-term goal to model the circuits that
control each key decision in a stem cell’s life (Scheme 1) and
to gradually link these modules together and predict how to
programme a stem cell into differentiating down a particular
pathway by providing it with the correct signals as a function
of time. This signal-control programme may be valuable both
for basic stem-cell biology as well as for the development of
processes to harness stem cells for both tissue-engineering
and regenerative-medicine therapies. One major challenge
to the development of mechanistic models, however, is
that kinetic parameter values, and in some cases even the
identities of proteins and genes in the network, are un-
known. Until the biology is fully elucidated and quantified,
statistical methods such as Bayesian-network approaches
may be able to help identify networks and draw causal links
from experimental interaction data sets [140,141].

Conclusion

With the discovery that growth factors, cytokines, morpho-
gens, hormones, adhesion factors and cell-culture condi-
tions regulate stem-cell fate both during development and
adulthood, the biology and engineering fields have evolved
from a view of stem-cell function regulated entirely by
cell-intrinsic, stochastic mechanisms to one in which

extrinsic factors exert a measure of deterministic control
over their fate. It is indeed possible that the apparently
random fate choices cells sometimes make in culture are not
hardwired by cell-intrinsic stochastic mechanisms, but
rather due to our currently incomplete understanding
of the factors that control the cells. In the absence of
the proper signals in vitro, some decisions that are control-
led deterministically in vivo may be left to chance. Therefore
the numerous sources of variability may be amplified,
including differences in cell–cell contacts, autocrine signall-
ing [142], cell-cycle state, and heterogeneity in the cell
population. Future culture systems may incorporate a
combination of soluble factors, synthetic materials [37,143]
and bioactive polymeric materials (K. Saha, K. Healy and
D. Schaffer, unpublished work) to create synthetic, in vitro
stem-cell niches with the correct biochemical and mech-
anical properties. However, future studies will also deter-
mine whether stochastic effects due to small numbers of
intracellular regulatory molecules could in some situations
place an inherent limit on the ability to control stem cells
in vitro and in vivo [33,134–136].

In summary, over the next decade there will be
several major challenges for field of stem-cell biology and
engineering. First, continuing to identify new extrinsic bio-
logical signals that regulate stem cells will significantly aid
both efforts to understand the basic mechanisms that
control these cells, as well as to harness stem cells for tissue
engineering and regenerative medicine. Stem cells appear to
reside in niches in vivo, and there has been recent progress
in elucidating both the identities of the support cells that
line these niches [144,145], as well as the signalling factors
that these ‘chaperone’ cells provide to the stem cells
[146,147]. Secondly, progress will be made in the develop-
ment of robust bioprocesses and technology platforms
for scaling the findings of basic stem-cell biology into the
clinic. Finally, the continuing evolution of increasingly
molecular- and genetic-engineering models for stem-cell
propagation and control will synergize with basic biology
and enhance efforts to translate stem cells from benchtops
to bioprocesses.
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