Tunable Far-IR Laser Spectroscopy of Jet-Cooled Carbon Clusters: The V$_2$ Bending Vibration of C$_3$

C. A. Schmuttenmaer; R. C. Cohen; N. Pugliano; J. R. Heath; A. L. Cooksy; K. L. Busarow; R. J. Saykally

Stable URL:
http://links.jstor.org/sici?sici=0036-8075%2819900824%293A249%3A4971%3C897%3ATFLSOJ%3E2.0.CO%3B2-9

Science is currently published by American Association for the Advancement of Science.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aaas.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
The observed decrease of absorption intensity comes from an increased ground-state partition function for the larger C₂ cluster and an expected slight decrease in the relative density of C₃ in the molecular beam (6, 22). If the interstellar C₂/C₃ abundance ratio is not too small, then the frequencies reported here will make astronomical observation of this molecule possible. This, in turn, will constitute an important step in understanding the nature and distribution of carbon in the interstellar medium.

REFERENCES AND NOTES

23. Supported by the Office of Naval Research (grant N0014-90-1436). J.R.H. thanks the Miller Foundation for support. A.L.C. thanks Search for Extra-terrestrial Intelligence for support. We thank J. Tartar and S. Chang for their continued support.

May 1990; accepted 20 June 1990

Tunable Far-IR Laser Spectroscopy of Jet-Cooled Carbon Clusters: The ν₂ Bending Vibration of C₃

Seven rovibrational transitions of the (011 0) → (000 0) fundamental bending band of C₃ have been measured with high precision with the use of a tunable far-infrared laser spectrometer. The C₃ molecules were produced by laser vaporization of a graphite rod and cooled in a supersonic expansion. The astrophysically important ν₂ fundamental frequency is determined to be 63.416529(40) cm⁻¹. These measurements provide the basis for studies of C₃ in the interstellar medium with far-infrared astronomy.

The study of carbon clusters by both theory and experiment has received a great deal of recent attention (1–3). These species have been proven to be remarkably ubiquitous. They are observed, for example, in flames and electrical discharges, in carbon stars, and in laser-produced plasmas of various polymers. They are implicated in the process of soot formation and in the aggregation of interstellar dust grains. Many investigations have evidenced new closed structures of carbon composed of five and six membered rings.

The elucidation of the roles of carbon clusters in these various contexts has been seriously impeded by the absence of spectral and structural data for them. In fact, detailed laboratory spectra have been measured only for C₂, C₂H⁺, C₂H₂, and C₂H₃, although both infrared and electron spin resonance data have been obtained for several other species from studies in cryogenic matrices (4). We are attempting to improve this situation. In a previous report (5) we described a general new technique for measuring carbon clusters with mid-infrared laser absorption spectroscopy, and infrared (IR) spectra of the C₃ cluster were presented as an initial demonstration of the method. The detection of C₃ in the carbon star IRC+10216 by infrared astronomy was presented at the same time by Bernath et al. (6). In this report, we describe a new experiment for measuring far-infrared (FIR) (10 to 350 cm⁻¹) spectra of carbon clusters with high precision (1 × 10⁻⁷) and high sensitivity, and present the first direct measurement of the astrophysically important 63 cm⁻¹ bending mode of

Department of Chemistry, and Materials and Chemical Sciences Division, University of California and Lawrence Berkeley Laboratory, Berkeley, CA 94720.
C₃ as an initial demonstration of the method.

Ab initio quantum chemistry calculations have shown (4) that for C₃ with n < 10, the clusters with odd n have linear ground states of 1Σ₅⁻ symmetry, whereas those with even n have two roughly equi-energetic lowest states—a linear $1Δ₅$ state and a cyclic singlet state. All of the linear clusters are expected to exhibit bending vibrations (7) in the range 40 to 150 cm⁻¹, which is accessible with this experiment. Thus, a systematic study of the structures, properties, and dynamics of these species is now possible. In addition to the intrinsic value of such measurements for characterizing the general nature of carbon-carbon bonding, they will also provide the basis for a systematic study of carbon clusters in the interstellar medium, with the use of recently developed (8) FIR laser heterodyne receivers.

While C₃ has been studied in detail by electronic emission (9) and absorption (10) spectroscopy, mid-infrared laser spectroscopy (11, 12), stimulated emission pumping (13, 14), and matrix isolation IR spectroscopy (4), the bending fundamental has not been accurately characterized. High level ab initio calculations (15) indicate that the ground state of C₃ is weakly quasi-linear, with an equilibrium bond angle of 162° and a barrier to linearity of 21 cm⁻¹. As a result, the bending motion is quite floppy, and the fundamental frequency is predicted to be very low—near 63 cm⁻¹. Until recently, tunable coherent sources of radiation did not exist in this frequency region; consequently, high-resolution FIR spectroscopy of the isolated cluster was not possible. We have recently developed a tunable FIR laser transient absorption spectrometer incorporating supersonic beam production of clusters, and have employed it to make this measurement.

The ¹²C nucleus has spin J = 0, which allows only symmetric spin states for C₃, and causes all rotational levels of a given vibronic state to have the same parity. Therefore, the selection rules s ↔ s and + ↔ − allow the $v₂ = 1 ↔ 0$ energy to be determined only by direct measurement of this FIR transition, not through combination differences of infrared and optical transitions. This precise determination of the $v₂$ band origin is of considerable astrophysical interest because it will facilitate the detection of C₃ in the interstellar medium at FIR wavelengths. As C₃ has no permanent dipole moment, and hence no pure rotational spectrum, this bending vibration will be the lowest frequency emitted or absorbed by C₃. Although this species has been detected in the carbon star IRC+10216 by mid-IR astronomy (16), dense molecular clouds will probably be too cold for C₃ to exist in the excited states necessary for detection in the mid-IR. Therefore, rovibrational lines in the fundamental bending vibration will be the most promising transitions to search for in these cold sources.

The tunable FIR laser system itself has been described previously (17) and only a brief review and the particular modifications incorporated for the study of carbon clusters will be discussed here. Fixed frequency FIR radiation is generated by continuous wave optical pumping of a 2.4 m far-infrared molecular gas laser with a commercial (Apollo Lasers) 150 W line-tunable CO₂ laser. Far infrared radiation in the range 13 to 150 cm⁻¹ has been generated with this system. The fixed frequency FIR radiation is mixed with tunable microwave radiation in a Schottky barrier diode (Univ. Va. 117) to generate sum and difference frequencies at $ν_{FIR} ± ν_{MW}$, where $n = 1, 2, 3, \ldots$. Microwave power from 2 to 110 GHz is available, to give tunability of more than 7 cm⁻¹ about a given fixed frequency far infrared laser line. The tunable sideband power (10 to 100 µW) is separated from the much stronger (10 to 50 mW) carrier frequency ($ν_{FIR}$) with a polarizing Michelson interferometer, and the laser is detected by a stressed Ge:Ga photodiode, which responds from 55 to 85 cm⁻¹.

The FIR laser frequencies used in this study were 1891.2743 GHz (CH₃F₂), 1757.5263 GHz (CH₃OH), 1838.8393 GHz (CH₃OH), and 2058.1418 GHz (CH₃OD). Care had to be taken to ensure that the detector would not be saturated by residual laser carrier radiation transmitted through the polarizing Michelson interferometer. The tunable sidebands were typically about as strong as the residual fixed frequency laser power that leaked through the interferometer, as measured with a low finesse (~10) Fabry-Perot etalon. At times it was necessary to use the Fabry-Perot to reject the residual carrier frequency. Laser power-to-noise ratios on the order of 10⁵ to 10⁶ were achieved with a 1 Hz lock-in bandwidth at 100 kHz.

A fivefold improvement in sensitivity of the system was obtained by use of a multi-pass cell of the type presented by Perry and co-workers (18). The cell consists of a near concentric cavity in which the laser travels non-axially. Unlike the configuration described by Perry, in which the input and output beams enter and exit through opposite sides, we force the input and output beams to enter and exit from the same side. This is done because the wide FIR beam waist (~0.5 cm) necessitates large clearances between the beam and the mirrors. We typically employ 10 to 16 passes, with an insertion loss of ~85%. Since the laser travels non-axially in the cell, we observe Doppler broadening of the transitions due to the components of the laser parallel and anti-parallel with the expansion. At 63 cm⁻¹, this broadening is about 3 to 8 MHz.

The C₃ molecules were generated in a supersonic expansion by excimer laser vaporization of a graphite rod (National Arc Carbons) as in our study (5) of C₂. The 248 nm KrF line, with a typical power of 100 mJ per pulse was used at a repetition rate of 120 Hz. The excimer laser was focused on the rod with a 50-cm focal length CaF₂ lens. We found that decreasing the excimer laser power by a factor of 2 did not affect the signal strength. Argon carrier gas was used, with
pressures of 8 to 11 atm behind a pulsed valve and a 1 ms gas pulse length. No signal was observed when with helium as carrier gas.

Similar studies (19) of NH₂ generated by photolysis of NH₃ established new methods of detecting absorptions of transient species. There are some differences in our current configuration as compared to that of Cohen et al. (19). Previously, we frequency modulated the laser and demodulated the detector output before sending it to the boxcar integrator. In the present configuration, we no longer frequency modulate the laser, but instead filter the detector output with a 10 kHz to 30 kHz bandpass filter. This filter allows the majority of the frequency components of the signal to pass, but rejects the majority of the 1/f noise. Second, the absorptions were detected by using two boxcar integrators (Stanford Research SR250) and an analog processor (Stanford Research SR235) instead of a single boxcar. The first boxcar operated ~60 µs after the excimer laser pulse and had a gate width of 4 µs. The background subtraction gate opened ~25 µs after the first, and had a width of 3 µs. The amount of delay relative to the excimer shot depends on the distance from the source to the FIR laser beam, which was about 3.5 cm. The precise values of the boxcar delays were optimized by simultaneously displaying the output from the detector and the boxcar gates on an oscilloscope. By holding the laser frequency at the absorption maximum of a strong transition the gates could be positioned easily. The outputs of the two boxcars were then subtracted by the analog processor. This approach has the advantage over a single boxcar using background subtraction in that: (i) two different gate widths can be used to optimize the signal-to-noise ratio, and (ii) very small temporal separations between the two gates are possible. A scan of the Q(6) line is shown in Fig. 1. The best signal-to-noise ratio observed for C₅ was near 200, obtained when averaging 12 excimer shots per data point and collecting 1000 data points per 150 MHz scan.

The measured transition frequencies of the 7 lines observed in this study are presented in Table 1. The rotational temperature is estimated to be near 10 K. A weighted least squares fit was performed with these 7 lines and 34 combination differences from the (00'1) 1→ (00'0), and (01'1) 1→ (01'0) infrared bands measured by Hirota and coworkers (11, 12). The energy expressions used were: for the (00'0) state

\[E = B(J + 1) - D[J(J + 1)]^2 + H[J(J + 1)]^3 \]

and for the (01'0) state

\[E_s = v_0 + B[J(J + 1) - \ell^2] - D[J(J + 1) - \ell^2]^2 + H[J(J + 1) - \ell^3] \pm \frac{1}{2} [q_e J(J + 1) + q_d J(J + 1)]^2 + q_H J(J + 1)]^3 \]

where \(v_0 \) is the band origin, \(B, D, \) and \(H \) are the rotational constants, centrifugal distortion constants, and third-order distortion constants, respectively, and \(q_e, q_d, \) and \(q_H \) are their associated \(\ell \)-type doubling constants. Here the \(+(-)\) signs refer to states with even (odd) \(J \). The results of the fit are given in Table 2.

The long-term frequency drift of the FIR laser leads to uncertainties of about 7 MHz for the transition frequencies. The Q(4), Q(6), R(4), and R(6) lines were measured more accurately by calibrating the line of interest with a nearby D₂O or HDO absorption, the frequency of which is accurate to 1 MHz. Atmospheric water absorptions made the measurement of many lines impossible, even when a dry nitrogen purge was used along the FIR beam path. The precision of the infrared combination differences is 63 MHz (45 MHz × 1.414). The band origin deduced from this analysis is 63.416529 (40) cm⁻¹. This compares with estimates from previous experimental studies (10, 12) of 63.1 cm⁻¹ to 66 cm⁻¹.

The intensity of the v₂ fundamental studied in this work was expected to be quite low, given that the theoretical prediction (15) for the transition dipole was 0.19 debye, compared with 0.44 for the v₃ band. Hence, the absorption coefficient of the v₂ band is expected (12) to be 100 times stronger than that of the v₂ fundamental. The most intense rovibrational lines of the v₂ fundamental observed in a similar supersonic beam source with our diode laser spectrometer exhibited a fractional absorption near 20%, the same result observed for the strongest lines of the v₃ band. Work is presently under way to better quantify the fractional absorption of the v₂ and v₃ bands. Given these results, one can conclude that the ab initio estimates described by Kraemer et al. (15) must be in error. This is an important issue to resolve, since the extraction of column densities from remote observations depends explicitly on the transition moment.

REFERENCES AND NOTES

24 AUGUST 1990

REPORTS 899

Fig. 2. Schematic diagram of the Berkeley tunable far infrared laser transient absorption spectrometer used in this work.
Ungrouped Iron Meteorites in Antarctica: Origin of Anomalously High Abundance

JOHN T. WASSON

Eighty-five percent of the iron meteorites collected outside Antarctica are assigned to 13 compositionally and structurally defined groups; the remaining 15 percent are ungrouped. Of the 31 iron meteorites recovered from Antarctica, 39 percent are ungrouped. This major difference in the two sets is almost certainly not a stochastic variation, a latitudinal effect, or an effect associated with differences in terrestrial ages. It seems to be related to the median mass of Antarctic iron meteoroids, which is about 1/100 that of non-Antarctic iron meteoroids. During impacts on asteroids, smaller fragments tend to be ejected into space at higher velocities than larger fragments, and, on average, small meteoroids have undergone more changes in orbital velocity than large ones. As a result, the set of meteoroids that contributes small meteoroids to Earth-crossing orbits is larger than the set that contributes large meteoroids. Most small iron meteorites may escape from the asteroid belt as a result of impact-induced changes in velocity that reduce their perihelion values to less than the aphelion of Mars.

Iron meteorites are classified on the basis of their structures and detailed compositions (1). In all, 13 groups of five or more meteorites have been identified, but 15% of the iron meteorites cannot be so classified and are called "ungrouped" (the choice of five as the minimum number required to form a group is arbitrary). Meteorites in 10 of the 13 groups seem to have formed by the fractional crystallization of large metallic magmas on separate parent bodies. The origin of the meteorites in the remaining three groups is not settled; they may have formed as individual pools of shock melt (2). Strong interelement correlations are observed in each group; slopes on element-Ni trends are generally higher in the magmatic than in the nonmagmatic groups. For some elements (Co, Ca, and especially Ga and Ge), the total compositional variation in most groups is much smaller than that between groups; thus, these elements are useful taxonomic parameters.

The ungrouped iron meteorites have compositions that place them distinctly outside the group fields on most element-Ni diagrams. Generally the structures (for example, kamacite bandwiths and the nature and content of nonmetallic phases) are also inconsistent with membership in the groups that have the most similar contents of the taxonomic elements. It is convenient to designate sets of one to four compositionally related iron meteorites as "grouplets." Each of these grouplets also appears to have formed in a separate parent body. Roughly 40 asteroidal parent bodies are required to account for the 100 ungrouped iron meteorites; thus, 150 to 55 asteroids are needed to account for the 605 characterized iron meteorites. Stony meteorites show less diversity; the characterized set requires about half as many parent bodies as the iron meteorites. Clarke (3) recognized that the fraction of ungrouped iron in the set from Antarctica was much larger than that of iron from the remainder of the world. Wasson et al. (1) confirmed this observation and expanded the characterized set (8 ungrouped in a total of 24 Antarctic iron meteorites) and discussed mechanisms that could account for the enhanced abundances. I report data for seven additional Antarctic iron meteorites (including four ungrouped); thus, the ungrouped fraction is now 12/31 or 0.39. Because each of the 12 Antarctic ungrouped iron meteorites has a different composition, the large fraction of ungrouped iron cannot have resulted from atmospheric breakup, a process that could be responsible for the anomalously high fraction of H chondrites in Victoria Land, Antarctica (4).

Two of the seven new Antarctic iron meteorites (Table 1) are typical group members: IIIAB GRO85201 and IIIID LEW86540. The composition of another one, EET87506, places it within IAB fields on most element-Ni diagrams, but its Ir content is about three times as high as that expected, and its structure is anomalous. The remaining four iron meteorites are ungrouped; their compositions differ in numerous ways from those observed in groups having the most similar Ga and Fe content. Compared to mesosiderite metal nodules having a similar Ni content, Ir in ALH84223 is low by a factor of 100, and Co, As, and Au are about 1.2 times as high. Meteorite EET87516 has a structure and Ga content similar to those of group IVA iron meteorites, but its Ir content is only by a factor of 10, its Co content is high by a factor of 1.2, and its Ga content is low by a factor of 1.2 for an IVA iron with a Ni content of 92 mg/g.

One of the most interesting of the new iron meteorites is LEW85369, which contains Si dissolved in the Fe-Ni metal; in this and most other compositionally respects, LEW85369 resembles the ungrouped Horse Creek iron meteorite and the ungrouped metal nodules from the Mount Egerton stony-iron meteorite. The LEW86211 iron contains ~62% FeS by volume (5), after Sorotii the second highest percentage in an iron meteorite. It is compositionally most similar to the low-Ni extreme of group IIE but is deviant on most element-Ni diagrams; for example, Ir and W are 34 and 1.5 times as high, respectively, as the highest IIE values. In all, 88 of the 574 non-Antarctic iron meteorites are ungrouped (1), a fraction of 0.153. If the probability that any randomly chosen iron meteorite is ungrouped is 0.153, the probability of finding >12 ungrouped iron meteorites in a set of 31 is 0.0013. It is thus very unlikely that the Antarctic iron meteorites are sampling the same population as the non-Antarctic iron meteorites. It is not possible to account for the high...