High-throughput screening approach for nanoporous materials genome using topological data analysis: application to zeolites

Y. Lee, S. D. Barthel, P. Dlotko, S. M. Moosavi, K. Hess, and B. Smit, High-throughput screening approach for nanoporous materials genome using topological data analysis: application to zeolites J Chem Theory Comput 14 (8), 4427  (2018) http://dx.doi.org/10.1021/acs.jctc.8b00253

Abstract The materials genome initiative has led to the creation of a large (over a million) database of different classes of nanoporous materials. As the number of hypothetical materials that can, in principle, be experimentally synthesized is infinite, a bottleneck in the use of these databases for the discovery of novel materials is the lack of efficient computational tools to analyze them. Current approaches use brute-force molecular simulations to generate thermodynamic data needed to predict the performance of these materials in different applications, but this approach is limited to the analysis of tens of thousands of structures due to computational intractability. As such, it is conceivable and even likely that the best nano-porous materials for any given application have yet to be discovered both experimentally and theoretically. In this article, we seek a computational approach to tackle this issue by transitioning away from brute-force characterization to high-throughput screening methods based on big-data analysis, using zeolite database as an example. For identifying and comparing zeolites, we used a topological data analysis-based descriptor (TD) recognizing pore shapes. For methane storage and carbon capture applications, our analyses searching pairs of most similar zeolites observed good correlations between performance properties of a seed zeolite and the corresponding pair, which demonstrates the capability of TD to predict performance properties. It was also shown that when some top zeolites are known, TD can be used to detect another high-performing materials as their neighbors with high probability. Finally, we performed high throughput screening of zeolites based on TD. For methane storage (or carbon capture) applications, the promising sets from our screenings contained high-percentages of top performing zeolites; 45% (or 23%) of top 1% zeolites in the entire set. This result shows that our screening approach using TD is highly efficient in finding high performing materials. We expect that this approach would easily be extended to other applications by simply adjusting one parameter, the size of the target gas molecule.


© Berend Smit 2019