First-principles Hubbard U approach for small molecule binding in metal-organic frameworks

G. W. Mann, K. Lee, M. Cococcioni, B. Smit, and J. B. Neaton, First-principles Hubbard U approach for small molecule binding in metal-organic frameworks J Chem Phys 144 (17), 174104 (2016) http://dx.doi.org/10.1063/1.4947240


Abstract: We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initioU values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO2-MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO2 binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.

© Berend Smit 2019