Molecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X

L. Joos, J. A. Swisher, and B. Smit, Molecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X Langmuir 29 (51), 15936 (2013)  http://dx.doi.org/10.1021/la403824g

Abstract: The presence of H2O in post-combustion gas streams is an important technical issue for deploying CO2-selective adsorbents. Due to its permanent dipole, H2O can interact strongly with materials where the selectivity for CO2 is a consequence of its quadrupole interacting with charges in the material. We performed molecular simulations to model the adsorption of pure H2O and CO2 as well as H2O/CO2 mixtures in 13X, a popular zeolite for CO2 capture processes that is commercially available. The simulations show that H2O reduces the capacity of these materials for adsorbing CO2 by an order of magnitude and that at the partial pressures of H2O relevant for post-combustion capture, 13X will be essentially saturated with H2O.

© Berend Smit 2013