Classical S-Matrix for Vibrational Excitation of H_2 by Collision with He in Three Dimensions

JIMMIE D. DOLL† AND WILLIAM H. MILLER

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and Department of Chemistry,
University of California, Berkeley, California 94720
(Received 21 August 1972)

Complex-valued classical trajectories have been computed by direct numerical integration of the equations of motion for three-dimensional collisions of He and H_2, and from such trajectories classical S-matrix elements for transitions between specific rotational–vibrational states of H_2 have been constructed. At the collision energies employed (\sim1–2 eV) all vibrationally inelastic transitions are classically forbidden, thus the need for analytically continued, complex-valued trajectories. Comparison with the quantum mechanical calculations of Eastes and Secrest shows excellent agreement between the quantum and uniform semiclassical transition probabilities. Since, however, for three-dimensional collision systems one is seldom concerned with individual S-matrix elements, but rather sums over many of them, an important practical feature is developed which shows how one can combine the usual Monte Carlo classical treatment of some of the internal degrees of freedom with a semiclassical state-by-state description of others; i.e., one can "quantize" only those degrees of freedom that are highly quantumlike (e.g., vibration). This "partial averaging" approach also greatly simplifies the practical aspects of applying classical S-matrix theory to systems with several internal degrees of freedom.

I. INTRODUCTION

In the last few years much progress has been made in learning how classical mechanics can be used semiclassically to describe molecular collision phenomena. The basic semiclassical idea is that one combines classical dynamics with the quantum principle of superposition (i.e., that one adds probability amplitudes corresponding to different contributions to a specific quantum transition, rather than the probabilities themselves) and it appears that many, perhaps all of the quantum effects in molecular collision dynamics can be accurately described within this framework. Applications of this "classical S-matrix" theory to reactive and nonreactive collision processes suggest that even highly quantumlike systems, for which the quantum effects are pronounced, are correctly described.

One of the most intriguing and important aspects of this theory is the ability to analytically continue the expressions for the classical S matrix and thus be able to treat classically forbidden collision phenomena. By "classically forbidden" one does not mean that the transition is forbidden by any conservation law or selection rule, but simply that ordinary classical dynamics does not lead to the transition. Even though there are no ordinary classical trajectories that contribute to such transitions, however, one can find complex-valued trajectories that have the correct double-ended boundary conditions. Along such a trajectory the classical action integral ϕ also becomes complex, so that the classical S-matrix element has the exponential damping factor $\exp(-\text{Im}\phi/k)$. This exponential damping is simply the appropriate analytic continuation of the quantum interference structure resulting from the principle of superposition and is a generalization of the concept of one-dimensional tunneling to systems with internal degrees of freedom.

Recent applications to reactive and nonreactive collisions have shown that classical S-matrix theory describes these classically forbidden transitions as accurately as it does classically allowed ones. These are indeed encouraging results, for as has been emphasized before, classically forbidden phenomena are ones for which classical S-matrix theory can make an important and unique contribution. Thus when the transitions of interest are all classically allowed and when one does not consider a completely state-selected situation (which is almost always the case for three-dimensional collision systems), the interference effects predicted by the semiclassical theory are often completely quenched; in such cases classical S-matrix

5019

Copyright © 1972 by the American Institute of Physics
theory will essentially be equivalent to the well-known Monte Carlo classical trajectory methods. If, on the other hand, the transitions of interest are classically forbidden, the strictly classical methods cannot in general give meaningful results.

Three important processes which are classically forbidden are reactive collisions with significant activation barriers (i.e., reactive tunneling), vibrationally inelastic transitions, and electronic transitions between different adiabatic potential energy surfaces. Examples of the first two of these have been studied for the colinear A+BC collision system, and this paper presents the first application of classical S-matrix theory to vibrationally inelastic collisions for a fully three-dimensional A+BC collision system, He+H$_2$.

The He+H$_2$ collision is an ideal one to study in detail for several reasons. First, an excellent potential energy surface for this system has been calculated by Gordon and Secrest; the only feature lacking in this potential is a van der Waals minimum, but this should be unimportant at collision energies relevant to vibrational excitation. Second, the quantum effects in this system should be maximal, making it an ideal one to test the limits of validity of a semiclassical theory; vibrational transitions are strongly forbidden classically even at collision energies of 2-3 eV. Third, preliminary but reasonably accurate quantum mechanical calculations have been carried out by Eastes and Secrest for the 0→1 vibrational transition; finally, shock tube measurements of the vibrational relaxation time of D$_2$ (infinitely dilute) in He have recently been reported over a wide temperature range.

Section II first summarizes the general features of classical S-matrix theory and discusses some of the computational details. Results for transition probabilities between specific vibrational–rotational states are presented in Sec. III and compared to the corresponding quantum mechanical values of Eastes and Secrest; agreement with these quantum mechanical results is excellent.

Although it is interesting and gratifying to see that the semiclassical theory agrees so well with quantum mechanics even down to the level of individual S-matrix elements, the actual cross sections of interest for a three-dimensional collision system involve sums over many such individual matrix elements. Furthermore, there are often many quantum states of certain degrees of freedom (i.e., rotation) that contribute and which can thus be treated in a classically-like manner, whereas only a few quantum states of other degrees of freedom (i.e., vibration) take part and thus are highly quantum-like. When many quantum states of all degrees of freedom participate, it has been argued previously that the usual Monte Carlo classical methods are quite adequate; if the vibrational degree of freedom is "highly quantized"—e.g., if all vibrationally inelastic transitions are classically forbidden as they are for He+H$_2$—however, these arguments are invalid.

A particularly important practical feature, therefore, is developed in Sec. IV where it is shown how one can, without introducing any dynamical approximations, combine a Monte Carlo averaging treatment of some degrees of freedom with a semiclassical state-for-state description of other degrees of freedom. If in an A+BC collision system, for example, only a few vibrational states are involved but many rotational states play a role, then it is possible to treat rotation in the usual Monte Carlo fashion but include vibration within the spirit of classical S-matrix theory, i.e., one can quantize only those degrees of freedom that actually require it. As discussed in Sec. IV, this procedure of "partial averaging" also drastically simplifies the semiclassical calculation by eliminating the most difficult aspects of applying the general expressions, and it is this version of classical S-matrix theory that appears to have most promise for widespread utility.

II. SUMMARY OF THE GENERAL THEORY AND METHOD OF CALCULATION

A. General Formulas

The general expressions for the classical S matrix for a three-dimensional atom–diatom collision system have been given previously; for the nonvibrating case they have also been written out in considerable detail. The formulas pertinent to the present case are thus a simple extension of those in Ref. 1(d) to include the vibrational degree of freedom. In Sec. II.A we first briefly summarize the general theory, and in Secs. II.B and II.C we then discuss several points regarding its application.

A specific S-matrix element is given by

$$S_{n_j j_1 l_j j_1 l_1} (J, E) = \sum D^{-1/2} \exp[i \phi (n_j j_1 l_j, n_1 j_1 l_1)],$$

(2.1)

where D is proportional to the 3×3 Jacobian determinant,

$$D = |2\pi|^{1/2} [\partial (n_j j_1 l_1) / \partial (n_1 j_1 l_j)],$$

(2.2)

and ϕ is the classical action integral along the trajectory determined by the indicated double-ended boundary conditions; units are used such that $\hbar = 1$. The summation in Eq. (2.1) is over all classical trajectories that satisfy the appropriate boundary conditions (see next paragraph); J and E are the conserved total angular momentum and total energy, and $n_j j_1 l_j (n_1 j_1 l_1)$ are the initial (final) integer values of the vibrational, rotational, and orbital angular momentum quantum numbers, respectively.

In order to find the classical trajectories appropriate to a specific transition one considers the final quantum numbers (for fixed values of J, E, n_1, j_1, and l_1) as functions of the initial angle variables conjugate to
Numerical integration of the classical equations of motion is the operational procedure by which one evaluates these "quantum number functions"; Sec. I.2.B discusses this in more detail. Finding the appropriate classical trajectories thus means solving the following equations simultaneously:

\[n_2(q_{n1}, q_{j1}, q_{i1}) = n_1, \]
\[j_2(q_{n1}, q_{j1}, q_{i1}) = j_1, \]
\[l_2(q_{n1}, q_{j1}, q_{i1}) = l_1, \]

(2.3)

where the rhs of these equations are specified integers. The Jacobian in Eq. (2.2) is the determinant of the matrix of partial derivatives of these functions with respect to the initial angle variables, with the angle variables evaluated at the root of Eq. (2.3).

At collision energies no greater than a few electron volts all vibrationally inelastic transitions in He+H₂ collisions are classically forbidden; i.e., there are no ordinary classical trajectories at these energies for which the vibrational quantum number is 0 initially, say 1 finally. Stated another way, there are no real values of the angle variables \((q_{n1}, q_{j1}, q_{i1}) \) that satisfy Eq. (2.3). There are, however, complex roots to these equations, or in other words, there exist complex-valued classical trajectories which satisfy the correct double-ended boundary conditions. Along such a trajectory the action integral \(\Phi \) is complex, so that Eq. (2.1) has the "tunneling factor" \(\exp(-\text{Im}\Phi/\hbar) \) which is characteristic of classically forbidden processes.

As has already been demonstrated\(^{11} \) for collinear A+BC collisions, it is actually possible to find the complex roots of Eq. (2.3) by directly integrating the equations of motion with complex initial conditions. The numerical integration proceeds very much as for ordinary real trajectories (but see Sec. II.C) except, of course, that all the coordinates and momenta must be declared COMPLEX in the computer routines. It is also necessary that the potential energy function be an algebraic function of the coordinates so that it can be evaluated for complex coordinates, i.e., one cannot use potential functions that are defined "piecemeal" in various regions of coordinate space.

The formal justification for analytically continuing Eqs. (2.1)–(2.3) into complex domains has been discussed before.\(^{11,16} \) The arguments are essentially identical to those\(^{10} \) in the one-dimensional case where complex solutions to the Hamilton–Jacobi equation (i.e., the classical action) are used to construct an asymptotic approximation to the wavefunction in classically inaccessible regions.

B. Specification of Initial Conditions

As before,\(^{14} \) the initial conditions are specified in terms of the action-angle variables discussed in the previous section, but the actual numerical integration of the equations of motion is most conveniently carried out in Cartesian coordinates. One thus specifies initial values of the action-angle variables (see below), transforms these into initial conditions for all the Cartesian coordinates and momenta, integrates the equations of motion for the Cartesian variables, and after the collision is over transforms the final Cartesian variables into final values of the action-angle variables.

To minimize the length of time for which the trajectory must be numerically integrated it is useful to eliminate the asymptotic unperturbed motion. The unperturbed Hamiltonian is given in action-angle variables by\(^{14} \)

\[H_0(P, I, n, j, R, q_l, q_n, q_i) = (P^2 + P/R^3)/2\mu + \epsilon(n, j), \]

(2.4)

where \(R \) and \(P \) are the center-of-mass translational coordinate and momentum, and \(\epsilon(n, j) \) is the semi-classical rotational-vibrational eigenvalue function for the isolated diatomic molecule; the notation is the same as in Ref. 1(a). Integration of the equations of motion resulting from this Hamiltonian from the reference time \(t = 0 \) to \(t \) gives

\[n(t) = n_1, \]
\[j(t) = j_1, \]
\[l(t) = l_1, \]
\[R(t) = (b^2 + \nu_1^2t^2)^{1/2}, \]
\[P(t) = -\mu v_1[1 - b^2/R(t)^2]^{1/2}, \]
\[q_n(t) = q_{n1} + \left[\partial \epsilon(n_1, j_1) / \partial n_1 \right] t, \]
\[q_j(t) = q_{j1} + \left[\partial \epsilon(n_1, j_1) / \partial j_1 \right] t, \]
\[q_l(t) = q_{l1} + \tan^{-1}(\nu_1/b), \]

where \(b \) is the initial impact parameter and \(\nu_1 \) the magnitude of the initial velocity,

\[\nu_1 = \{2[E - \epsilon(n_1, j_1)] / \mu \}^{1/2}, \]
\[b = l_1 / \mu \nu_1. \]

(2.6)

The angle variables \((q_{n1}, q_{j1}, q_{l1}) \) are phase shifts for these respective degrees of freedom, and as before,\(^{1b} \) they are taken as the independent initial values that are actually used in the manner discussed in Sec. II.A, i.e., for consistency of notation the angle variables in Sec. II.A and elsewhere in the paper (except for this present section) should have a "bar" over them, but this has been omitted in order to keep the notation as cluttered as possible. For a homonuclear molecule, such as H₂, \(q_{n1} \) and \(q_{j1} \) can be taken without restriction\(^{1d} \) to lie in the interval \((0, \pi)\), and \(q_{n1} \) takes on values in the \((0, 2\pi)\) interval.

The time \(t_1 \) at which the numerical integration is actually begun can be any negative value large enough
so that

\[R(t) = R(t) \geq R_{\text{max}}, \quad (2.7) \]

where \(R(t) \) is given by Eq. (2.5d) and \(R_{\text{max}} \) is a value large enough for the scattering interaction to be negligible. Matters are considerably simplified if one, in addition, chooses \(t_1 \) so that the vibrational angle variable \(q_\perp(t_1) \) is initially an integer multiple of \(2\pi \).

From Eq. (2.5f) it is seen that this choice is

\[t_1 = -\frac{(2\pi N + \tilde{q}_\parallel)}{\partial q_\parallel(n_1, j_1) / \partial n_1}, \quad (2.8) \]

where \(N \) is a positive integer large enough so that Eq. (2.7) is satisfied. The initial values of the action-angle variables are then given by Eqs. (2.5) with \(t = t_1 \).

Since \(q_\perp(t_1) = -2\pi N \), the diatomic molecule is initially at its inner radial turning point, i.e., the radial coordinate and momentum \(r \) and \(p \) at time \(t_1 \) are

\[p = 0, \quad r = r_\perp, \quad (2.9) \]

\(r_\perp \) being the inner radial turning point for the diatom. This means that the vibrational phase integral and the centrifugal distortion terms in Eqs. (27), (39), and (40) of Ref. 1(a) all vanish identically at \(t_1 \), and this is the principal reason for choosing \(t_1 \) in the above manner.

With the initial values of the action-angle variables given by Eq. (2.5) (with \(t = t_1 \)), it is then possible to use the transformation in Appendix C of Ref. 1(d) without modification to obtain the corresponding values of all the Cartesian coordinates and momenta.

It is interesting to note that the procedure described in this section for specifying the initial conditions is essentially a verbatim application of the formal expression for the scattering operator,

\[S = \lim_{t_0 \to \infty} \exp[-iH_0(0-t_0)/\hbar] \times \exp[-iH(t_0-t_1)/\hbar] \exp[-iH_0(t_1-0)/\hbar]. \quad (2.10) \]

The first operator describes propagation from the reference time \(t = 0 \) backward in time to \(t_1 \) under the influence of the unperturbed Hamiltonian; the system then evolves from \(t_1 \) to \(t_0 \) under the influence of the total Hamiltonian; and finally, the unperturbed Hamiltonian acts from \(t = t_0 \) backward in time again to the reference time \(t = 0 \).

Beginning the trajectory in the manner described above [i.e., such that Eq. (2.9) is satisfied] also simplifies calculation of the action integral \(\phi \). The simplification is even greater if one also terminates the numerical integration in the final asymptotic region at a time which the vibrational coordinate \(r \) is again at its inner radial turning point. This is an easy thing to do, but it simplifies matters considerably, again because the vibrational phase integral

\[\int_{r_\perp} dr \{ 2m[e^{-\nu(r')} - j^2/r'^2]^{1/2} \quad (2.11) \]

is identically zero at such a time. This means that the generator of the canonical transformation from the variables \((r, p) \) to \((n, q_\parallel) \) has the numerical value \(0 \) at the initial and final times \(t_1 \) and \(t_2 \). Consequently, the action integral \(\phi \) is given by precisely the same expression that was used before for the rigid rotor-atom system,\(^4\) i.e.,

\[\phi = \frac{1}{2}(l_\perp l_\perp) - \left[Jq_\parallel + l_\perp j_\perp + j_\perp + PR + \frac{1}{2}(j^2 - P^2)/J \right] \bigg| \begin{array}{c} \frac{t_2}{t_1} \\ \frac{t_1}{t_1} \end{array} + \int_{t_1}^{t_2} dt 2T, \quad (2.12) \]

where \(T \) is the total kinetic energy. The term

\[\left. \frac{\partial r}{\partial t} \right|_{t_1}, \]

as well as action integrals like that in Eq. (2.11), which formally appear in the expression for \(\phi \), are absent in Eq. (2.12) because of these special choices for \(t_1 \) and \(t_2 \).

\[\text{C. Choice of the Complex Time Path} \]

As has been discussed before,\(^{17,18}\) there is a certain degree of flexibility one has when dealing with complex-valued trajectories that is not available with ordinary real-valued trajectories: Since the total time increment \((t_2 - t_1)\) is complex, there is the question of what curve in the complex \(t \) plane one should integrate along in incrementing the time from \(t_1 \) to \(t_2 \). This causes no formal problems because the final values of the quantum numbers and the action \(\phi \) (and, therefore, the classical \(S \)-matrix elements), being analytic functions of \(t \), are independent of the path chosen for the time integration. One can thus view this ambiguity of the time path as an advantage and choose it in any way that facilitates the calculation. (For ordinary real trajectories one also has the option of choosing any contour in the \(t \) plane along which to increment time, but of course the real time axis is the uniquely obvious choice in this case.)

From our experience with complex-valued trajectories the most critical feature appears to be the oscillatory degrees of freedom, i.e., vibration. The coordinates of nonoscillatory degrees of freedom, such as translation, are well characterized by low-order polynomials in \(t \), so that no drastic change in their behavior occurs when \(t \) becomes complex. The vibrational coordinate \(r \), however, is sinusoidal in \(t \), and when \(t \) becomes complex this oscillatory motion acquires exponential character. If one is not careful, therefore, the vibrational coordinate can "run away" and the trajectory diverge.

To make the trajectories as well behaved as possible the complex time path is thus chosen to keep the vibrational coordinate under control. After experimenting with various approaches, the following pro-
cEDURE was adopted: every time \(\Re(p) \) passes through zero the phase \(\alpha \) of the next time increment \(\Delta t \),

\[
\Delta t = |\Delta t| \exp(i\alpha),
\]

is chosen to cause \(p \to 0 \), i.e., every time the oscillator passes around a turning point the direction of the time path is chosen to force it in the direction of the turning point. This procedure has the effect of preventing the oscillator from making excursions too far outside its classical turning points. Because of the dimensionality of the nonlinear equations to be solved (i.e., three), it was highly undesirable to integrate the trajectory from both the initial and final asymptotic regions and match in the intermediate region,\(^{11}\) for this would have doubled the number of nonlinear equations to be solved simultaneously.

Although the above procedure of integrating the complex trajectories "straight through" from the initial to final asymptotic region was well behaved under most conditions and reasonably efficient (about 1 sec per trajectory on a CDC 7600), it is not at all clear that there may not be better algorithms for choosing the complex time path. The technology of computing complex-valued classical trajectories is still very much in its infancy.

III. RESULTS FOR SPECIFIC QUANTUM TRANSITIONS

The specific system to which the theory is applied in this paper is the three-dimensional \(\text{H}_2 + \text{He} \) collision with the interaction potential of Gordon and Secrest.\(^{6}\) In order to compare with the quantum mechanical calculations of Eastes and Secrest\(^{7}\) the \(\text{H}_2 \) vibrational potential was chosen to be harmonic,

\[
v(r) = \frac{1}{2} m \omega^2 (r-r_0)^2,
\]

and to get an idea of the sensitivity to anharmonicities in the \(\text{H}_2 \) potential, the calculations were repeated with a Morse potential,

\[
v(r) = D[\exp(-\alpha(r-r_0)) - 1]^2.
\]

(Semiclassically it is no more or less difficult to use one \(\text{H}_2 \) potential than any other.)

Eastes and Secrest\(^{7}\) were primarily interested in studying the effect on pure rotational transitions of properly including the vibrational degree of freedom. In the process, however, they obtained some at least approximate results for vibrationally inelastic transitions. Specifically, for total energies \(E = 2 \hbar \omega \) and \(3 \hbar \omega \) and total angular momentum \(J = 0 \) and 10, they reported \(S \)-matrix elements for the transitions \((n_1 j_1 \ell_1) \to (n_2 j_2 \ell_2)\) for \(n_1 = 0; j_1 = 0 \), 2; \(\ell_1 = |J - j_1| \).

The most difficult aspect of applying classical \(S \)-matrix theory to the calculation of \(S \)-matrix elements for specific quantum transitions is finding the trajectories which satisfy Eq. (2.3). For the present applications we took a rather straightforward approach: With the initial quantum numbers fixed at their initial integer values, \(q_{n_1}, q_{j_1}, \) and \(q_{j_1} \) were first varied over a coarse grid (five points per variable) of real values in their respective intervals. For these ordinary real-valued trajectories the final rotational quantum number attained values from 0 up to \(\sim 5 \), but for no trajectory was \(n_2 \) greater than \(\sim 0.2 \), i.e., vibrationally inelastic transitions are classically forbidden. The values of \((q_{n_1}, q_{j_1}, q_{j_1}) \) for which \(n_2 \) was a maximum, however, provided rough initial guesses for the real parts of the desired complex values of \((q_{n_2}, q_{j_2}, q_{j_2}) \).

Using a multidimensional Newton iteration scheme with initial guesses obtained as above, the complex roots of Eq. (2.3) were found for the cases \(J = 10, n_2 = 1, j_2 = 2, \ell_2 = J - 2 \), at both values of the total energy. There are actually four roots to Eq. (2.3), i.e., four complex trajectories that contribute comparably to each transition. It was easy to see that this would be the case even from the preliminary real trajectories, for the vibrational degree of freedom is qualitatively separable from the rotational and orbital degrees of freedom. That is to say, the values of \(q_{n_1} \) for the four roots of Eq. (2.3) are approximately the same, while \(q_{j_1} \) and \(q_{j_1} \) are substantially different for the four roots, i.e., the four roots correspond qualitatively to the uncoupled equations,

\[
j_2(q_{j_1}, q_{j_1}) = 2,
\]

\[
\ell_2(q_{j_1}, q_{j_1}) = 8,
\]

which have four roots for \((q_{j_1}, q_{j_1}) \), and

\[
n_2(q_{n_1}) = 1,
\]

which has a single root.

This qualitative separability of vibration from the other two internal degrees of freedom is also manifest in the fact that the classically forbidden aspect of the transition is highly concentrated in the vibrational degree of freedom: The imaginary parts of \(q_{j_1} \) and \(q_{j_1} \) are small (\(\sim 10^{-2} \)), but the imaginary part of \(q_{n_1} \), quite large (\(\sim 5 \)). Therefore, although one can rigorously speak only of the complete transition \(n_1 j_1 \ell_1 \to n_2 j_2 \ell_2 \) being classically forbidden, it is qualitatively meaningful to say that the rotational part of the transition is classically allowed and that only the vibrational part is classically forbidden.

As in earlier applications\(^{14}\) of classical \(S \)-matrix theory, when there are several trajectories contributing to a particular transition, it is usually necessary to employ uniform semiclassical expressions to obtain highly accurate results for individual \(S \)-matrix elements. With four trajectories contributing to the present transitions the four-term uniform expression obtained earlier\(^{19}\) could be used. (Marcus\(^{24}\) has recently generalized this result to the case of \(N \) internal degrees of freedom with up to \(2^N \) contributing trajectories.)

The numerical results obtained for these transitions are given in Table I; the quantum mechanical values of
Table I. Transition probabilities.

<table>
<thead>
<tr>
<th>Transition*</th>
<th>Classical b</th>
<th>Semi-classical c</th>
<th>Uniform d</th>
<th>Quantum e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E = 2\hbar \omega$</td>
<td>5.79×10^{-4}</td>
<td>2.65×10^{-7}</td>
<td>1.57×10^{-2}</td>
<td>1.40×10^{-7}</td>
</tr>
<tr>
<td>$E = 3\hbar \omega$</td>
<td>1.44×10^{-4}</td>
<td>1.10×10^{-4}</td>
<td>8.40×10^{-4}</td>
<td>6.72×10^{-5}</td>
</tr>
</tbody>
</table>

* Both transitions are for $J = 10$, $(n_1, j_1, l_1) = (0, 0, 10)$, and $(n_2, j_2, l_2) = (1, 2, 8)$, at the indicated total energy E.

b The sum of the square moduli of the four terms that contribute to the S-matrix element in Eq. (2.1), i.e., neglect of all interference terms.

c The square modulus of the S-matrix element given by Eq. (2.1); there are four terms which contribute to the sum.

d The uniform semiclassical values obtained by use of the four-term uniform formula in Footnote 12.

e The quantum mechanical values of Eastes and Secrest, Ref. 7.

Eastes and Secrest are those resulting from the largest number of coupled channels used in their calculation. From the variation of the quantum mechanical results with increasing size of the basis set it is clear that these are not the “final” quantum mechanical values, i.e., the transition probabilities are still changing (and nonmonotonically) with the addition of further channels at the point the calculation is discontinued. It appears, however, that the quantum mechanical results are probably correct to within at least a factor of 2.

The agreement of the uniform semiclassical transition probabilities and the quantum mechanical values is seen to be excellent, suggesting that the quantum mechanical coupled channel expansion has almost “converged.”

The identical calculations carried out with the Morse vibrational potential also resulted in four trajectories contributing to each transition. The uniform semiclassical transition probability for $E = 2\hbar \omega$, however, is 1.47×10^{-5}, compared to 1.57×10^{-2} for the harmonic potential, a factor of 100 larger! At the higher energy $E = 3\hbar \omega$ the effect of anharmonicity is less, the Morse case giving 4.30×10^{-4}, compared to 8.40×10^{-4} for the harmonic potential, a factor of 5 larger. This sizeable effect of anharmonicity is similar to that which has been noted in the colinear collision system12,14 and is presumably due to the fact that the oscillator can tunnel more easily into the softer outer wall of the Morse potential. The corresponding quantum mechanical picture of this effect is that the vibrational wavefunctions decrease less rapidly for large r with the Morse potential.

It was originally planned to calculate some of the S-matrix elements for $J = 0$, too, but the preliminary sweep of (q_{11}, q_{11}, q_{11}) through the coarse grid of real values indicated that there are many roots to Eq. (2.3), at least eight and probably more. First of all, it is not clear how to treat so many contributions to the S matrix uniformly (the roots did not appear to be in a simple configuration that would allow use of Marcus28 result); but second, when there are so many contributions, and thus a large number of interference terms, it is doubtful that any of the interference structure survives. For these reasons, and because of the methods developed in the next section, the $J = 0$ case was not pursued.

IV. PARTIAL AVERAGING

The detailed comparison of classical S-matrix theory with accurate quantum mechanical results for specific S-matrix elements, such as in the previous section and in earlier applications, is important in learning just how far this semiclassical theory can go in describing quantum effects in molecular collisions. For this reason, too, it is most interesting to consider highly quantalike systems such as He+H_2. Now that these features of the theory have been fairly well established, however, one would like to avoid the explicit construction of all the individual S-matrix elements, for the various cross sections of interest invariably average over many of the quantum number indices and thus obliterate much of the fine detail.

In earlier work14 it has actually been shown how the semiclassical approach “degenerates” to the Monte Carlo classical procedure when all the transitions of interest are classically allowed and one considers any situation other than complete state selection initially and finally. Unless all the degrees of freedom participating in the transitions of interest are classically allowed, however, these arguments are invalid and the usual Monte Carlo treatment not in general justifiable.

This section shows how one can combine a Monte Carlo-like description of the classically allowed degrees of freedom (i.e., rotation and orbital angular momentum for the present He+H_2 system) with a semiclassical quantalike description of the highly quantized degrees of freedom (i.e., vibration in the present case). This is possible, too, without making any dynamical approximations regarding separability of the different degrees of freedom, and it greatly simplifies the practical aspects of applying the semiclassical theory to systems with several internal degrees of freedom.

Suppose, for example, one is interested in the rate coefficients for specific initial and final vibrational states, summed and averaged over all initial and final rotational states. This matrix of vibrational rate constants, which is what is required in order to compute vibrational relaxation times, is given by

$$k_{n_2 \rightarrow n_1}(T) = Q(n_1)^{-1}(8kT/\pi \mu)^{1/2}(\pi \hbar^2/2\mu kT) \sum_J (2J+1)$$

$$\times \int d(E/kT) \exp(-E/kT)A_{n_2,n_1}(J, E),$$

(4.1)
with the definition

$$A_{n_2,n_1}(J, E) = \sum_{j_1,i_1,l_1} | S_{n_2,j_2,i_2,n_1,i_1,l_1}(J, E) |^2,$$

(4.2)

where it is assumed that translation and rotation are both completely "relaxed," i.e., in thermal equilibrium, and $Q(n_i)$ is the rotational partition function for vibrational state n_i.

$$Q(n_i) = \sum_{j_i} (2j_i+1) \exp[-\epsilon(n_i, j_i)/kT].$$

(4.3)

The quantity of interest, therefore, is the matrix A_{n_2,n_1}, the square modulus of the S matrix, summed over all initial and final values of the rotational and orbital quantum numbers. If all vibrationally inelastic transitions (i.e., $n_i \neq n_2$) are classically forbidden in the relevant energy range, then strictly classical Monte Carlo methods are not applicable.

With the S-matrix elements given by Eq. (2.1) the matrix A_{n_2,n_1} of Eq. (4.2) is given by

$$A_{n_2,n_1} = |\int d\tilde{q}_1 d\tilde{q}_2 d\tilde{q}_3 d\tilde{q}_4 (2\pi)^{-4}$$

$$\times [\partial (n_2 j_2 l_2) / \partial (n_1 q_1 q_2 q_3 q_4)]^{-1} \exp(-2i\phi) (4.4)$$

where the labels E and J have been suppressed, the sums over orbital and rotational quantum numbers have been replaced by integrals, and the factor of 16 associated with the $6\Delta l$ and Δj selection rule has for simplicity been dropped for the present discussion. There may actually be several terms in the integrand of Eq. (4.4), e.g., four, which has not been indicated explicitly; the interference terms resulting from them have been discarded, however, since it is being assumed that they are quenched by the sums over quantum numbers. Holding j_1, l_1, n_2, n_1 fixed, the integration variables \tilde{q}_2 and \tilde{q}_4 can be changed to q_1 and q_3, giving

$$A_{n_2,n_1} = (2\pi)^{-3} |\int d\tilde{q}_1 d\tilde{q}_2 d\tilde{q}_3 d\tilde{q}_4$$

$$\times [\partial (n_2 j_2 l_2) / \partial (n_1 q_1 q_2 q_3 q_4)]^{-1} \exp(-2i\phi) (4.5)$$

where the variables held constant in the two Jacobians have been indicated explicitly. The awkward feature of Eq. (4.5) is that the two-dimensional Jacobian that arises from the change of integration variables is with respect to n_2 held constant, rather than the conjugate initial variable q_4. It is a good exercise in the manipulation of partial derivatives to show how these derivatives can be changed to those that hold only initial conditions constant; in particular, one can show that the two-dimensional Jacobian in Eq. (4.5) can be expressed as

$$[\partial (n_2 j_2 l_2) / \partial (q_1 q_2 q_3 q_4)]_{i_1 l_1 n_1} = [\partial (n_2 j_2 l_2) / \partial (n_1 q_1 q_2 q_3 q_4)]_{i_1 l_1}$$

$$\times [\partial n_2 / \partial q_4]_{i_1 l_1 q_1 q_2 q_3 q_4}^{-1}.$$

(4.6)

so that Eq. (4.5) thus takes the form

$$A_{n_2,n_1} = |\int d\tilde{q}_1 d\tilde{q}_2 d\tilde{q}_3 d\tilde{q}_4 (2\pi)^{-3} (2\pi)^{-3} \exp(-2i\phi) (4.7)$$

where the one-dimensional vibrational Jacobian is with regard to all other initial conditions held constant.

Equation (4.7) is the remarkably simple form that has been sought. To obtain the $n_1 \rightarrow n_2$ transition probability, summed over all initial and final orbital and rotational quantum numbers, it is necessary simply to perform a phase space average of a one-dimensional vibrational transition probability. Since the integrand in Eq. (4.7) is positive definite, the integrals over j_1, l_1, q_1, and q_3 can be evaluated efficiently by Monte Carlo methods. Thus for given initial values (j_1, l_1, q_1, q_3) one must solve only the one-dimensional nonlinear equation

$$n_2(q_4) = n_2,$$

(4.8)

to find the value of q_4 that results in the correct integer value for the final vibrational quantum number; the root of Eq. (4.8) having been found, one constructs the one-dimensionallike transition probability and then Monte Carlo averages it over (j_1, l_1, q_1, q_3). The general statement of the "partial averaging" trick is that all those degrees of freedom which are not "state selected" can be treated by a Monte Carlo average over their initial coordinates and momenta, and it is necessary to deal with double-ended boundary conditions only for the degrees of freedom that are state selected.

Note also that there will typically be only one term in the integrand of Eq. (4.7), so that there is no concern about having to deal with many-term uniform semiclassical formulas. In addition, the Monte Carlo integration over j_1, l_1, q_1, and q_3 is expected to be easy for, as discussed in Sec. III, the root of Eq. (4.8) varies only slightly for different values of the orbital and rotational degrees of freedom, and the "one-dimensional" vibrational transition probability is thus only weakly dependent on j_1, l_1, q_1, and q_3.

Moreover, it is not necessary to discard information about the distribution in final rotational quantum number or in scattering angle, i.e., in evaluating Eq. (4.7) one still computes fully three-dimensional classical trajectories, so that all of the information concerning the trajectories is available. Thus it is possible within the spirit of the usual Monte Carlo procedure to obtain the distribution in j_2 and θ that go along with a specific vibrational quantum transition $(n_1 \rightarrow n_2)$ simply by putting the results of each trajectory (in this case the numerical value of the one-dimensional vibrational transition probability) in the appropriate "box." If, too, one wishes results that correspond to a specific initial rotational state, then the integral over j_1 in Eq. (4.7) is simply omitted.
Finally, it is interesting to see that Eq. (4.7) can also be obtained by a simple heuristic derivation analogous to that which leads to the normalization of classical S-matrix elements. For fixed values of the initial quantum numbers n_i, j_i, l_i, therefore, the probability distribution in the final quantum numbers is related by the equations of motion to the distribution in the initial conjugate angle variables,

$$d\omega d\omega P(n_2 j_2 l_2 \rightarrow n_1 j_1 l_1) = P(n_1) d\omega P(q_{i1}) dq_{i1} \times P(q_{i1}) dq_{i1} P_{\text{traj}},$$

(4.9)

where P_{traj} is a probability factor related to the degree that the trajectory is allowed classically, i.e.,

$$P_{\text{traj}} = \exp(-2i\phi),$$

(4.10)

so that $P_{\text{traj}} = 1$ for a classically allowed trajectory, and $P_{\text{traj}} < 1$ if the trajectory is classically forbidden.

Since the initial angle variables are all random in $(0, 2\pi)$,

$$P(q_{i1}) = P(q_{i1}) = (2\pi)^{-1},$$

and integration of Eq. (4.9) over j_2 and l_2 gives the desired result,

$$\int dq_{i1} \int dq_{i2} P(n_2 j_2 l_2 \rightarrow n_1 j_1 l_1) = \int dq_{i1} \int dq_{i2} (2\pi)^{-1} \exp(-2i\phi).$$

(4.11)

Preliminary application of these methods of "partial averaging" indicate them to be quite accurate and considerably easier to apply than the general formulas for the classical S matrix. More extensive calculations for the $He^+ + H_2$ system using these averaging methods are in progress.

V. CONCLUDING REMARKS

Application of classical S-matrix theory to the calculation of S-matrix elements for specific vibrational–rotational transitions has been made to the fully three-dimensional $He^+ + H_2$ collision system. Agreement with quantum mechanical results for the same system is seen to be excellent, showing that molecular systems even as quantumlike as this one are essentially semiclassical in nature.

Although it is impressive that the semiclassical theory can reproduce such quantum features in detail, in most cases one wishes to bypass the construction of individual S-matrix elements and construct actual cross sections directly. As was shown in Sec. IV, it is possible to do this within the framework of classical S-matrix theory—and this "partial averaging" actually greatly simplifies the application of the theory. Thus it is necessary to quantize semiclassically only those degrees of freedom that are highly quantumlike (e.g., vibration) and treat others via the usual Monte Carlo classical procedure. When all the transitions of interest are strongly allowed classically, the partial averaging procedure becomes identical to the usual Monte Carlo methods.

With the ideas discussed in Sec. IV, therefore, it may be possible to treat classically forbidden transitions, such as vibrational excitation in $He^+ + H_2$ collisions, with essentially the ease and accuracy that Monte Carlo classical methods describe processes that are classically allowed.

* Supported in part by the Petroleum Research Fund, administered by the American Chemical Society, and the United States Atomic Energy Commission.

§ Also see the related work by Marcus; (a) R. A. Marcus, Chem. Phys. Letters 7, 525 (1970); (b) J. Chem. Phys. 54, 3965 (1971); (c) J. N. L. Connor and R. A. Marcus, ibid. 55, 5636 (1971); (d) W. H. Wong and R. A. Marcus, ibid. 55, 5663 (1971); (e) R. A. Marcus, ibid. 56, 311 (1972); (f) R. A. Marcus, ibid. 56, 3548 (1972); (g) R. A. Marcus (unpublished).

* See the discussion in Appendix B of Ref. 1(d).

* See any quantum mechanics textbook.

* See the discussion in Appendix B of Ref. 1(d).

* The expression in Eq. (8B) of Ref. 1(d) is given incorrectly; the correct expression is

$$S = \rho \frac{\rho}{\pi \gamma} \frac{\rho}{\pi \gamma} (A_i + \rho B_i) (A_i + \rho B_i) \exp[\gamma (\phi_{12} + \phi_1)]$$

$$+ \rho \frac{\rho}{\pi \gamma} \frac{\rho}{\pi \gamma} (A_i - \rho B_i) (A_i - \rho B_i) \exp[\gamma (\phi_{12} + \phi_1)]$$

$$+ \rho \frac{\rho}{\pi \gamma} \frac{\rho}{\pi \gamma} (A_i + \rho B_i) (A_i - \rho B_i) \exp[\gamma (\phi_{12} + \phi_1)]$$

$$+ \rho \frac{\rho}{\pi \gamma} \frac{\rho}{\pi \gamma} (A_i + \rho B_i) (A_i - \rho B_i) \exp[\gamma (\phi_{12} + \phi_1)].$$

All of the remarks made in Appendix D of Ref. 1(d) concerning the uniform semiclassical result apply to this correct expression (and not to the incorrect one). For the case of complex-valued classical trajectories the factors $\{\rho\}$, which are related to the Jacobians, are in general complex.

