A Streamlined Synthesis for 2,3-Dihydroxyterephthalamides

Christine J. Gramer and Kenneth N. Raymond*

Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, California 94720
raymond@socrates.berkeley.edu

Received June 8, 2001

ABSTRACT

2,3-Dihydroxyterephthalamides have been synthesized through a route that avoids the protection and deprotection of the phenol groups. The procedure allows for symmetric and unsymmetric amide linkages. This synthetic sequence significantly decreases the time and cost of preparation and increases the overall yield of this class of metal chelators.

Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholamides (CAM) are commonly found in nature as siderophores, a class of bacterially secreted ligands that function to sequester and acquire Fe(III) from the environment.6 The siderophore enterobactin has an Fe(III) stability constant of 10^49, the highest known for any aqueous metal.1 For their extraordinarily high affinity for high oxidation state metals, CAM have been extensively investigated with withdrawing substituents. Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5 Catecholate ligands incorporating a variety of electron-withdrawing substituents have been extensively investigated for their extraordinarily high affinity for high oxidation state metals.1–5
methyl or benzyl protection of the catecholate oxygens 4, saponification of the esters to provide 5, activation to the acid chloride, coupling with the desired amine, and deprotection of the catecholate oxygens to yield the desired TAM. The CAMC synthesis differs in that it requires the saponification of only one ester of 4 followed by amide bond formation and hydroxyl deprotection.

The more efficient synthesis reported here for TAMs does not require protection of the phenolic oxygens; the direct activation of 2,3-dihydroxyterephthalic acid 2 with SOCl₂ is followed by reaction with an amine. By avoiding the protecting group the number of synthetic steps are reduced from seven to three. This eliminates two steps involving the hazardous reagents dimethyl sulfate and BBr₃, decreases the synthetic time from approximately 9 to 2 days, increases the overall yield to 75%, and decreases the cost for alkyl TAMs 10-fold. This synthetic sequence also broadens the diversity of available TAMs since deprotection of methyl ether protecting groups with BBr₃ is incompatible with certain functional groups that might be desired in the amide side chains. Finally, this procedure has been adapted to allow for the preparation of CAMC ligands and the installation of two different amides, generating a much wider range of compounds.

For the current synthesis, compound 2 was activated with an excess of SOCl₂ in refluxing dioxane for 6 h (Scheme 2). Although a variety of organic solvents were used successfully, the use of dioxane ensures the removal of excess SOCl₂ during evaporation. Coupling the crude acid chloride 6 with octylamine, cyclohexylamine, or ethylamine followed by extraction with 1 M HCl and recrystallization yields the pure product in 40–90% yield, depending on the hydrophobicity of the product.

Activation of the dicarboxylic acid 2 with SOCl₂ was proposed on the basis of previous work on the SOCl₂ activation of 2,3-dihydroxybenzoic acid, for which there was originally some confusion about the product composition. The product was first reported as 2,3-dihydroxybenzoyl chloride 9 on the basis of the previously reported formation of 2,4-dihydroxybenzoyl chloride 11, although characterization was limited to a melting point of 84 °C for the sublimed crystals (Figure 1). However it was later shown that the phenol groups react to form a sulfite ester, a convenient and effective in situ protecting group. The resulting sublimed crystals of 2,3-dioxosulfinylbenzoyl chloride 10 were characterized by melting point and elemental analysis. This acid chloride has been useful for several syntheses requiring the installation of a catecholamide. The formation of the catecholate sulfinic anhydride is also precedent; the synthesis of 1,2-dioxosulfinyl benzene from the reaction of catechol with SOCl₂ has been reported. The key intermediate for making the symmetric TAMs is the product of the reaction between 2 and SOCl₂. By analogy to 10 and 11, both 2,3-dihydroxyterephthaloyl chloride 12 and 2,3-dioxosulfinylterephthaloyl chloride 13 could be considered as products (Figure 2). One product isolated from refluxing dioxane exhibits a singlet in the ¹H NMR spectrum at ca. 8 ppm. We assign this as the labile intermediate 13. The decomposition of 13 via loss of SO₂ to form the less reactive phenol acid chloride 12 can be monitored by ¹H NMR.

Figure 1. Phenolic acid chlorides 9–11 that have been described in the literature. What was originally reported as 9, on the basis of analogy to 11, was later shown to be 10.
NMR spectroscopy, as the singlet at 8 ppm disappears and another appears at ca. 7.5 ppm. The starting compound 2 exhibits a singlet in the 1 H NMR spectrum at ca. 7.2 ppm. Sublimation of the resultant yellow solid yielded crystals suitable for X-ray diffraction. This confirmed that the activated intermediate with a 1 H NMR signal at 7.5 is 12 and not an ester polymer formed from the reaction of the phenol oxygens with the acid chloride. As is seen with all TAMs in the solid state, the carbonyl is oriented such that the oxygen is hydrogen-bonded to the phenolic proton. The stability of this chelate hydrogen bond possibly in part hinders the formation of a polymeric ester. An amine can be coupled with a mixture of 12 and 13 without a loss in yield, and the transitory protecting group is easily cleaved during the aqueous workup following the amine coupling.

This procedure was modified so a TAM with two different amide linkages can be prepared (Scheme 3). This methodology is demonstrated with the synthesis of ligand 19 and is general for most amides. Monosaponification of the dimethyl ester 3 with aqueous NaHCO₃ affords 14 in 70% yield. The acid chloride was prepared by treatment of 14 with SOCl₂ in refluxing dioxane. The crude acid chloride was then coupled to octylamine in the presence of TEA to yield 15, which was converted to the acid 17 using degassed 1 M KOH. Halting the synthesis at this point provides the CAMC ligands. Finally, 17 was activated with SOCl₂ and treated with 1 equiv of 1-(2-ethylamino)piperidine to afford 19 in 40% yield. In general, it was found that installing the more hydrophobic of the two amides first eased the separation of the product from the excess amine. For monitoring the progress of any reaction, thin-layer chromatography was used with one of three solvent systems, 5:4:1 benzene/ethyl formate/formic acid, 5:4:1:1 ethyl acetate/acetone/methanol/water, or 4:3:1:1 ethyl acetate/acetic acid/methanol/water.

During the course of activating mono ester 14 with SOCl₂, one product is initially observed in the 1 H NMR spectrum that is tentatively assigned as 21. As with 13, the decomposition of this to the acid chloride 20 is observed (Figure 2). Sublimation of the resultant yellow solid affords a pure yellow powder, confirmed by elemental analysis as the acid chloride 20.

In summary, a synthesis for 2,3-dihydroxypentaphalamides has been developed that obviates the need for protection of the catecholates. The synthesis has been adapted to permit the introduction of two different amide linkages and can be used for the synthesis of the CAMC ligands. These routes avoid the costly BBr₃ deprotection and shorten the synthesis...
of a symmetric TAM from 1 week to 1 day. This methodology could enable broad application in large-scale production of sequestering agents based on this class of ligands.

Acknowledgment. This research was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy (DOE), under contract number DE-AC03-76SF00098. Additionally, this research was supported in part under grant no. SF17SP23, Environmental Management Science Program, Office of Science and Technology, Office of Environmental Management, U.S. DOE. We thank Dr. Jide Xu for helpful suggestions.

Supporting Information Available: Full experimental details and characterization of all new compounds, including crystallography. This material is available free of charge via the Internet at http://pubs.acs.org.