Structural evolution of water-in-propylene carbonate mixtures revealed by polarized Raman spectroscopy and molecular dynamics†

Jessica B. Clark, Tai Bowling-Charles, Shamma Jabeen Proma, Biswajit Biswas, David T. Limmer and Heather C. Allen*

The liquid structure of systems wherein water is limited in concentration or through geometry is of great interest in various fields such as biology, materials science, and electrochemistry. Here, we present a combined polarized Raman and molecular dynamics investigation of the structural changes that occur as water is added incrementally to propylene carbonate (PC), a polar, aprotic solvent that is important in lithium-ion batteries. Polarized Raman spectra of PC solutions were collected for water mole fractions \(0.003 \leq \frac{\text{water}}{\text{PC}} \leq 0.296\), which encompasses the solubility range of water in PC. The novel approach taken herein provides additional hydrogen bond and solvation characterization of this system that has not been achievable in previous studies. Analysis of the polarized carbonyl Raman band in conjunction with simulations demonstrated that the bulk structure of the solvent remained unperturbed upon the addition of water. Experimental spectra in the O–H stretching region were decomposed through Gaussian fitting into sub-bands and comparison to studies of dilute HOD in D₂O. With the aid of simulations, we identified these different bands as water arrangements having different degrees of hydrogen bonding. The observed water structure within PC indicates that water tends to self-aggregate, forming a hydrogen bond network that is distinctly different from the bulk and dependent on concentration. For example, at moderate concentrations, the most likely aggregate structures are chains of water molecules, each with two hydrogen bonds.

Introduction

The structure and properties of water within complex environments is of fundamental interest due to its potential to reveal new insights into the dynamic hydrogen bonding network of water and its many anomalous bulk properties which have confounded the community for decades.¹,² When water is limited in quantity and geometric configuration by physical or chemical constraints, its properties often differ significantly from those of a bulk liquid.³–⁵ It is necessary to understand how the properties of water are altered in these environments in order to establish the limits at which bulk properties begin to arise or break down. This knowledge aids in the understanding of the fundamental microscopic mechanisms that govern water's macroscopic properties.

There has been significant study of the structure of water in systems with well-defined boundaries such as in confinement within reverse micelles,³,⁶ carbon nanotubes,⁷,⁸ metal–organic frameworks,⁹,¹⁰ and silica pores.¹¹ However, the study of water in disordered, dynamic environments such as binary mixtures has been more limited.¹²–¹⁷ Notable exceptions are water in ionic liquids, which have gained significant interest in recent years.¹⁶–²² Studies of ionic liquid binary mixtures with water reveal nanoscopic aggregation of water within the solvent (i.e. formation of a nanoconfined “water pocket”) that is strongly dependent on the chemical structure of the ionic liquid.¹⁶–¹⁸,²³ Using small angle X-ray and neutron scattering, Abe and coworkers found that the “water pocket” formed in the ionic liquid [C₄mim][NO₃] has slow orientational dynamics and weak hydrogen bonds due to the nanoconfined nature of the system.¹⁷

In contrast to studies of water in ionic liquids, studies investigating binary mixtures of dilute water dispersed in dipolar, aprotic, organic solvents are more limited.¹²,¹₄,₂₄–²₉

⁶ Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA. E-mail: allen@chemistry.ohio-state.edu
⁷ Department of Chemistry, University of California, Berkeley, California 94720, USA
⁸ Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
⁹ Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
¹⁰ Kavli Energy NanoScience Institute, Berkeley, California 94720, USA
† Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3cp02181e
Studies in the late 1960s showed that within partially chlorinated hydrocarbon solvents, water formed small clusters with itself (dimers to tetramers), but there was disagreement concerning the primary species. In comparison to the previous study, Shultz and coworkers revealed that water exists as monomers in the non-polar solvent CCl₄ and that the rotational motion of the monomers is greatly restricted by the solvating environment. In hydrogen bond accepting solvents such as amines and ketones, water self-association has been observed and formation of the trimer species has been proposed. In such systems, water exists under dynamic confinement by the polar, aprotic solvents due to a balance of intermolecular interactions. The structural characterization of these binary mixtures provides information that is critical in multiple materials applications such as ion solvation in electrolyte solutions.

Propylene carbonate (PC) is a commonly used solvent in lithium-ion batteries, where it is typically mixed with linear carbonates to provide optimal charge stabilization and transport. One of the pitfalls of these electrolyte solutions is the hygroscopicity of PC, which can result in water contamination. This contamination causes hydrolysis of LiPF₆ to HF and significantly impedes battery performance. Studies have also shown that the addition of PC or water to electrolyte solutions greatly impacts the ion conductivity, in which some cases is dictated by the types of ion pairs formed in solution. It is still unclear how the addition of water to PC impacts the PC/Li ion pair formation and thus the conductivity. Therefore, it is critical to understand the solvation structure of water in PC. PC has unique chemical and physical properties that make it a well-suited solvent for studies of water structure under dynamic confinement. PC has a high dielectric constant (64.40 at 25 °C) and dipole moment (4.94 D). Unlike many other similar organic solvents, it cannot act as a hydrogen bond donor, only as an acceptor. As a result, some of the chemical complexity that exists in hydrogen bond donating solvents is removed, enabling simpler structural characterization.

The behavior of water in a binary solution with PC has been evaluated in two notable previous studies, yet there is disagreement between the proposed water structure. The first study by Grunwald and coworkers evaluated mixtures of PC and water in the concentration range 0–3.5 m (\(w_{\text{water}} \leq 0.26 \)) using FTIR and \(^1\)H NMR spectroscopies. From this study, it was concluded that water primarily forms monomers and dimers when solvated in PC and that cyclic trimers or other highly coordinated species do not form. Then in a second study, Dei and coworkers used surface tensiometry, differential scanning calorimetry, and FTIR spectroscopy to investigate mixtures of PC and water in the molar ratio range of 0.041 ≤ \(w_{\text{water}} \) ≤ 0.33. In contrast to the former study, Dei and coworkers claim that monomers and dimers are the primary species only under very limited water conditions (\(w_{\text{water}} < 0.14 \)). Once the water concentration exceeds the threshold, the authors observe that water shifts from being fully solvated by PC to forming stronger solute–solute interactions in trimer structures, a finding that is inconsistent with the older work by Grunwald et al. In the present work, we expand the knowledge of water structure within PC beyond what has been accomplished using FTIR spectroscopy to help address the conflicting conclusions that have been reached in previous works. This is achieved by combining MD simulations with polarized Raman spectroscopy, a technique that provides complementary vibrational information to FTIR spectroscopy.

In the analysis of water’s structure, vibrational spectroscopy is often employed due to its high sensitivity to the local environment of the molecule(s) being studied. Raman spectra, as opposed to FTIR, provide more highly differentiable O-H spectral features given the same instrument resolving power due to the differing selection rules. It is therefore highly suitable for observing subtle changes in water’s hydrogen bond structure. An additional advantage that Raman spectroscopy provides is the ability to observe polarized responses that result from local vibrational symmetry. The analysis of such responses from PC enables the determination of its liquid structure, which was unclear in prior work that relied on FTIR peak shifts alone.

In its bulk liquid state, water forms four hydrogen bonds in an approximately tetrahedral geometry, on average. These hydrogen bonds are highly dynamic and fluctuate on a picosecond timescale causing a distribution of configurations with varying bond strengths. As a result, the O-H stretching vibrational bands are broad and complex to interpret due to their close overlap with one another. It is generally accepted that this convolution of bands is a result of several component bands that correspond to different hydrogen-bonded water states. Therefore, this region is commonly deconvoluted using multiple Gaussian sub-bands allowing for characterization of water structure under varying conditions.

Despite decades of research in this area, there is still much debate over the identity of the water structures that give rise to each sub-band. For example, Sun and colleagues use five bands to fit the Raman O-H stretching band of bulk water. The bands are centered at 3041, 3220, 3430, 3572, and 3636 cm⁻¹ and are assigned to the single donor-double acceptor (DDA), double donor-double acceptor (DDAA), single donor-single acceptor (DA), double donor-single acceptor (DDA), and free-OH water arrangements, respectively. In contrast, studies of dilute water in ionic and dipolar liquids have deconvoluted the FTIR O-H stretching band into 3–5 Gaussians. These bands are assigned more generally to symmetrically and asymmetrically solvated water molecules as well as free-OH stretching. The absolute positions of these bands are dependent on the identity of the solvent.

Herein we present, to the best of our knowledge, the first Raman and MD simulation study of the liquid structure of water-in-propylene carbonate mixtures. We evaluate the structure of dilute water in PC as the concentration is increased from \(w_{\text{water}} = 0.003 \) up to saturation (\(w_{\text{water}} = 0.296 \)). Analysis of the O-H stretching and carbonyl regions of the Raman spectra reveals a hydrogen bond structure that is distinctly different from bulk water and highly concentration dependent. The noncoincidence effect (NCE) in the polarized carbonyl Raman band provides insight into structural changes in PC due to water solvation. Isotopic dilution spectroscopic experiments (10% HOD in D₂O) bridge the gap between experiment and simulations as well as highlight the extent of intramolecular vibrational coupling within...
water aggregates. Molecular dynamics simulation results find that water associates with itself in PC more than previous experimental inferences.12,14 Our simulations also provide the first insight into the structure of water aggregates within PC and their compositional evolution. This study expands the fundamental knowledge of the behavior of limited water in complex solvation environments, which has applications in various fields including, materials and electrochemistry.

Methods

Materials and sample preparation

Solutions of dilute water dispersed in PC were prepared in the concentration range of \(0.003 \leq \chi_{\text{water}} \leq 0.296\). These concentrations span the water-in-PC solubility range, stopping near the known miscibility gap \((0.33 \leq \chi_{\text{water}} \leq 0.95 \text{ at } 20 \degree C)\) of the two liquids.14 PC/water solutions were prepared by the incremental addition of ultrapure water (Milli-Q Advantage A10, resistivity 18.2 MΩ) to \(3.2626 \pm 0.0017 \text{ g of PC (Sigma-Aldrich, } \geq 99.7\% \text{, anhydrous)}\) in a standard quartz cuvette (Starna, 10 mm path length) that was sealed using a cap equipped with a silicone gasket to provide an air-tight seal. To limit water contamination of the solvent, a single-use sterile syringe and needle were used to transfer PC from the septum sealed bottle directly to the cuvette for immediate use without further purification. Thus, the purity of PC can be reasonably assumed to be that reported by the manufacturer (purity \(\geq 99.65\%\), water content by Karl Fischer titration \(\leq 0.002\%\)).65 To further limit excess water in the system, the cuvette was dried in a 150 \degree C oven for at least 12 hours before use.

Prior to the addition of water, the Raman spectrum of the pure PC sample was acquired. To achieve the desired molar ratio, water was then added to the PC sample incrementally until phase separation was reached. Phase separation occurred between a total of 240 and 260 \(\mu\text{L} \text{ of water added for all samples which corresponds to a water concentration in PC between } \chi_{\text{water}} = 0.29 \text{ and } 0.31\). The exact amount of water added to PC was determined by weighing the cuvette after each water addition (Mettler Toledo, XS104, \(\pm 0.1 \text{ mg}\)). Following each addition of water to PC, the sealed cuvette was manually shaken for at least 2 minutes then allowed to settle for 2 minutes prior to acquiring the polarized Raman spectra. Experiments were performed in duplicate at a room temperature of 20 \degree C.

Raman spectroscopy

The custom-built Raman spectrometer used in the current work has been described previously.66 Briefly, the Raman spectrometer consists of a diode-pumped continuous wave excitation laser (532 nm, 100:1 vertically (V) polarized, CrystaLaser) directly coupled to a Raman probe optical system (InPhotonics). Scattered light is collected using two independent fiber-optic cables which simultaneously collect the parallel (VV) and perpendicular (VH) polarized responses. The fiber optics are coupled to a spectrograph (IsoPlane 320, Princeton Instruments) using a 150 \(\mu\text{m} \) slit width and 600 g mm\(^{-1}\) grating (750 nm blaze). The two polarized signals are detected on separate regions of a LN\(_2\)-cooled CCD detector (Pylon 400BRX back-illuminated, Princeton Instruments). Spectra are collected by averaging 150 spectra using a 0.045 s exposure time. Laser power stability was ensured by taking the Raman spectrum of pure water following every 5 sample spectra. Intensity variations in the OH stretching region of the water spectrum were < 0.6\% for all experiments.

Computational studies

In order to validate the molecular inferences concerning the structure of water/PC mixtures, we developed a molecular dynamics simulation model. Using a GROMOS forcefield with an SPC/E water model, we simulated water/PC mixtures across a range of compositions between dilute solutions and across the experimental miscibility gap.67,68 All simulations were done under fixed number of molecules, temperature, and pressure using a Nose–Hoover thermostat and barostat.69,70 The temperature and pressure were fixed to 298 K and 1 bar, respectively. The number of molecules was equal to 200 PC molecules plus the number of water molecules necessary to fix the mole fraction between 0.04 and 0.22. Standard periodic boundary conditions, Ewald summation treatment of electrostatic interactions and a 2 fs timestep was employed in all simulations with the covalent hydrogen bonds held rigid with RATTLE.71 Each composition was simulated for 10 ns, with an initial 1 ns simulation at elevated temperature of 400 K and fixed volume to equilibrate the initial composition fluctuations. The specific forcefields were chosen because of their previous validation in related studies. The specific water model, SPC/E, has been previously shown to provide an accurate model for the electrostatic environments contributing to the inhomogeneous vibrational line shapes.72–74 Additionally, SPC/E GROMOS mixtures are able to reproduce experimental trends in solvation thermodynamics.75

Results and discussion

It is well known that the liquid structure of water is highly sensitive to its environment, yet there is still much debate over the microscopic mechanisms that govern water structure, particularly within systems where water is the solute. The aim of this study was to utilize a combined computational and experimental Raman approach to determine how dilute water partitions and interacts within a propylene carbonate (PC) solvent environment as water is increased up to the saturation limit. Structural changes within PC induced by the addition of water were also evaluated.

Raman spectroscopy

The polarized Raman spectra of PC solutions were acquired as the water concentration was increased from a mole ratio of \(\chi_{\text{water}} = 0.003\) to the saturation point (phase-separation) at \(\chi_{\text{water}} = 0.296\). Particular attention is paid to the O–H stretching (3000–3800 cm\(^{-1}\)) and carbonyl regions (1720–1820 cm\(^{-1}\)) to determine liquid structure of the mixtures. The O–H stretching region consists of a broad band resulting from the population
distribution of hydrogen-bonded water structures, which are expected to evolve as more water is added to the system. Deconvolution of the O–H stretching band into Gaussian sub-bands allowed for the characterization of water structure. The carbonyl band revealed interactions of water with the solvating environment and developed a complete picture of how the PC bulk structure evolves to accommodate the solvation of water molecules.

Water structure

The O–H stretching region of the PC/water Raman spectra after removing spectral contributions of pure PC through pre-processing is depicted in Fig. 1. Further discussion of the spectral pre-processing procedure is presented in the ESI† (see also Fig. S1 and S2). These results demonstrate that the O–H stretching band increases in intensity and broadness as the water concentration is increased. It is difficult to determine the solvation structure of water from these spectra without further deconvolution of the hydrogen bonded sub-structure, therefore a Gaussian fitting was applied to this region. The fitting procedure is described in the ESI† and the converged parameters are included in Table S1 and Fig. S3.

The number of Gaussian bands required for the fit was dependent on water concentration. In the low water concentration spectra ($\chi_{\text{water}} < 0.091$), only three Gaussian bands are required for the fit. These bands are centered at approximately 3480, 3550, and 3643 cm$^{-1}$. A representative spectrum for the low water concentrations ($\chi_{\text{water}} = 0.013$) is plotted in Fig. 2(a). Based on literature of aqueous interfaces and confined water, the highest frequency Gaussian, centered at 3643 cm$^{-1}$, is assigned to dangling-OH groups (also referred to as “free-OH” in previous publications). These O–H groups are pointed towards the solvating PC molecules, but are not participating in a hydrogen bond. The dangling-OH vibrational band arising from the hydration shells of dissolved nonpolar groups has been reported to occur at ~ 3660 cm$^{-1}$. In our spectra, this band is shifted to lower energy due to the solvating dielectric environment. Based on previous water cluster and dilute water studies, the second and third Gaussians, which occur at ~ 3550 and 3480 cm$^{-1}$, respectively, are assigned to “partially coordinated” water species. The water molecules that make up these groups form between one and three hydrogen bonds, but still do not form the fully coordinated, tetrahedral structure. Evidence for this is provided by Suhm and coworkers who assigned the 3550 and 3430 cm$^{-1}$ bands in the FTIR spectrum of thermally excited water clusters to the trimer and tetramer water species, respectively. Similar band positions were observed by Dei and Grassi in the FTIR spectra of dilute water in PC. The band observed at 3570 cm$^{-1}$ was assigned to “multimer water” that is weakly connected to its environment. Additionally, they assigned the band centered at 3450 cm$^{-1}$ to “intermediate water” that is moderately coordinated to other water molecules, but still has distorted hydrogen bonds. Based on these studies, it is
clear that the band we observe at 3550 cm\(^{-1}\) results from water molecules with low coordination and the band we observe at 3480 cm\(^{-1}\) results from water that is more coordinated in comparison. Therefore, we refer to the 3550 and 3480 cm\(^{-1}\) bands as “low coordination” and “moderate coordination” water states, respectively. Here, we choose to use broad language to describe the two center sub-bands to avoid speculating on the types of water aggregates formed in PC, which we cannot determine with spectra alone. These aggregates will be further explored using MD simulations.

Beginning at \(x_{\text{water}} = 0.091\) up to the saturation point, a fourth Gaussian is needed for the fit. The final and lowest frequency band is centered at \(\sim 3260\) cm\(^{-1}\). Based on well-established literature of bulk water and clusters, this band is assigned to water that forms four hydrogen bonds in an approximately tetrahedral geometry.\(^{11,52}\) In water clusters, this peak is primarily observed for hexamers or larger cluster sizes.\(^{83}\) To align with our chosen terminology, we refer to this hydrogen-bonded state as “full coordination” water. The full coordination water band can be observed in Fig. 2(b), where a representative spectrum for the high water concentrations (\(x_{\text{water}} = 0.232\)) is plotted.

To validate the peak assignments for the deconvoluted OH-stretching sub-bands, we considered the extent of intermolecular vibrational coupling for each of the sub-bands. This was achieved through isotopic dilution, where 5% H\(_2\)O in D\(_2\)O (10% HOD) was added incrementally to PC instead of pure water. As a result, the O–H stretching mode is decoupled and can be used as a more accurate reporter of water structure.\(^{61}\) The spectra of dilute O–H in PC/D\(_2\)O mixtures was deconvoluted in the same manner as the PC/H\(_2\)O spectra and the results are plotted in Fig. S4 (ESI\(^\dagger\)). To estimate the relative degree of vibrational coupling for each water structure observed, the intensity ratio of each sub-band to the highest intensity sub-band (low coordination, \(\sim 3550\) cm\(^{-1}\)) is compared before and after decoupling at a constant water concentration. In the PC/H\(_2\)O spectrum, the intensity ratios for the moderate coordination band at \(\sim 3480\) cm\(^{-1}\) and dangling-OH band at 3643 cm\(^{-1}\) are 1.02 and 0.38, respectively. In the decoupled spectrum, these ratios are 0.58 and 0.33, respectively. Removal of vibrational coupling causes the relative intensity of the moderate coordination water to decrease significantly whereas the relative intensity for the dangling-OH decreases only slightly. This demonstrates that the water structure responsible for the band at \(\sim 3480\) cm\(^{-1}\) experiences more intermolecular vibrational coupling and is therefore more coordinated than those giving rise to either the \(\sim 3550\) cm\(^{-1}\) or the 3643 cm\(^{-1}\) bands. Thus, our peak assignments of increasing water coordination with decreasing frequency are supported. The intensity ratio for the 3260 cm\(^{-1}\) band in the PC/H\(_2\)O spectrum is 0.18. This band did not have enough intensity in the decoupled spectrum to be

Fig. 3 Evolution of the deconvoluted Gaussian bands as the water concentration in PC is increased. Each band corresponds to a different hydrogen-bonded state of water: full coordination (A, violet), moderate coordination (B, orange), low coordination (C, green), and dangling-OH (D, blue). Darker colors correspond to higher water concentrations and dashed reference lines are set at peak position for lowest water concentration. The moderate and full H\(_2\)O bands undergo the largest peak shifts as the water concentration in PC is increased.
resolved from the PC band at 3220 cm\(^{-1}\), so an intensity ratio was not able to be obtained. However, the lack of intensity for this band in the decoupled spectrum indicates that this hydrogen bond state does experience some degree of coupling and further supports our assignment.

Comparison of the low (Fig. 2(a)) and high (Fig. 2(b)) water concentration deconvolutions reveals that the largest spectral changes due to increasing water concentration occur for the moderate and full coordination water species. The fully coordinated water peak, which is initially not present, is observed as water is added to the system. The moderate coordination water peak significantly increases in broadness and intensity, accounting for much of the changes observed in the entire O–H stretching region. The same trends were observed when the ATR-FTIR spectra of the PC/water mixtures, taken to supplement the Raman data, were deconvoluted in the same manner (see Fig. S5 and S6, ESI†).

Analysis of the individual deconvoluted Raman bands as a function of water concentration (Fig. 3) allowed for further understanding of how the water structure in PC evolves. Upon the addition of water, the full coordination band (Fig. 3(a)) increases in intensity and shifts significantly (\(\Delta \nu = -70 \text{ cm}^{-1}\)) to lower frequencies (red-shifts). Similarly, the moderate coordination band (Fig. 3(b)) increases in intensity and red-shifts (\(\Delta \nu = -53 \text{ cm}^{-1}\)). The shifting of vibrational bands to lower frequency as a function of concentration is attributed to the strengthening of hydrogen bonds or other intermolecular interactions with the oscillator. Moreover, the O–H stretching region in Raman spectra has been shown to be sensitive to the degree of tetrahedral order within water, where the band shifts strongly to lower frequencies as the tetrahedral order is increased.\(^{86}\)

The observed red-shifts in the moderate and full coordination bands are consistent with the formation of ordered hydrogen bond configurations which have increasing tetrahedral character and stronger bonds.

The low coordination (Fig. 3(c)) and dangling-OH (Fig. 3(d)) bands behave similarly as the water concentration is increased. Both bands increase in intensity as a result of an increase in the total water molecules in the system. These Gaussian bands do not undergo strong frequency shifts. The low coordination band increases in frequency (blue-shifts) by a total of 2 cm\(^{-1}\). This can be attributed to intrinsic error in the fitting analysis or could be indicative of subtle weakening of the hydrogen bonds for this species. The frequency of the dangling-OH band did not change appreciably between the highest and lowest water concentration studied; therefore, it was held constant for all subsequent fittings (see ESI†). The fact that the peak positions of the low coordination and dangling-OH bands do not change appreciably indicates that the water species that make up these populations do not undergo significant structural changes as the water concentration is increased.

The present analysis of the Raman O–H stretching region assumes that water exists within one of four states based on its degree of hydrogen bonding: dangling-OH, low coordination, moderate coordination, or full coordination. The O–H transition moment strength is assumed to remain constant across the individual solutions, therefore it follows that the total area of the O–H stretching band is the sum of the areas of the deconvoluted bands attributed to the different water hydrogen bond state. Taking this into account, we calculated the percent of the total area taken up by the individual water states as a function of water concentration. In Fig. 4, the percent of the total O–H stretching area taken up by each Gaussian is plotted as a function of water mole fraction. This plot demonstrates how the relative concentration of the water states change as water is added to PC.

At the lowest water concentrations in PC, the low coordination state is present in the highest relative concentration. As water is added, the concentration of the low coordination state decreases sharply and levels off around \(\chi_{\text{water}} = 0.20\) with a total decrease of 41%. Correspondingly, the moderate coordination state sharply increases in relative concentration as water is added. The total increase in the contribution of this band is 34%. The inverse trend in the relative concentration of the low and moderate coordination states demonstrates a shift in hydrogen bond structure as water is added to PC. Under very dilute conditions, water molecules exist primarily in low coordination states and do not interact strongly with one another. As water concentration is increased, water structure shifts and a greater population of water exists in moderate and full coordination states. The leveling off of the relative concentration curves in Fig. 4 indicates that this shift in structure is complete at \(\chi_{\text{water}} = 0.20\).

The full coordination and dangling-OH states do not experience significant changes in relative concentration. The full coordination state is not present until \(\chi_{\text{water}} = 0.091\) is reached due to the low intensity of this band at more dilute concentrations. This band undergoes an overall relative concentration increase of 9%, which indicates that a larger fraction of the total
water molecules exists in the most coordinated tetrahedral state at higher concentrations in PC. This is only possible if water is interacting strongly with itself and forming aggregates.20 The relative concentration of the dangling-OH state remains approximately constant at 8%. This concentration of dangling-OH is higher than in bulk water where it is ~3%.52 We conclude that the solvating PC environment yields a water hydrogen bonding structure that is disrupted from typical bulk water organization. Instead, PC supports a higher concentration of dangling-OH groups.

Based on the observed changes to the hydrogen-bonded substructure, we conclude that at low concentrations of water in PC, water does not self-associate to an appreciable extent. Instead, it is primarily solvated by weaker intermolecular interactions with PC. The presence of the 3480 and 3550 cm-1 bands at the lowest water concentration spectra suggest that a fraction of water molecules in PC form small aggregates such as dimers up to potentially tetramers and pentamers. We also conclude that at concentrations above $\chi_{\text{water}} = 0.091$, water self-associates to a greater extent, forming relatively large aggregates within the PC environment. The presence of the fully coordinated water band indicates that a significant portion of clusters formed have increasing tetrahedral order and must be hexamers or larger. In contrast to previous conclusions,12,14 we observe a gradual transition from mostly solvated water molecules to primarily aggregated water molecules in PC.

Using molecular dynamics (MD) simulations, we have quantified the degree of water clustering in PC by computing the average number of hydrogen bonds between water molecules as a function of bulk composition. Example snapshots from the MD simulations are shown in Fig. 5(a). These characteristic configurations show that water is well dispersed in the majority PC fluid. To accomplish this, we have employed a geometric criteria from Luzar and Chandler87 for defining a hydrogen bond (n_{HB}) as an oxygen-oxygen separation distance of less than 3.5 Å and an angle between the oxygen–oxygen displacement vector and the oxygen–hydrogen bond vector as less than 30°. The results of these calculations are shown in Fig. 5(b) where we enumerate the probability $P(n_{\text{HB}})$ of both the number and type of hydrogen bond. Specifically, we have differentiated molecules that are double hydrogen bond donors (DD), double acceptors (AA), single acceptor-single donors (DA), or double-donor single acceptors (DDA). At $\chi_{\text{water}} = 0.04$, water exists as a monomer 70% of the time, with the probability of dimers and trimers falling along Poisson statistics. At elevated water concentrations, the mostly likely structure becomes chains of water molecules each with two hydrogen bonds, one donated and the other accepting. The number of three and four coordinated water remains low, totalling only a combined 25% of solubilized water at the highest mole fractions considered, $\chi_{\text{water}} = 0.22$. These basic trends agree qualitatively with those in Fig. 4 from the Gaussian deconvolution of the experimental Raman spectra.

![Fig. 5](image-url) Molecular dynamic simulations of water–PC mixtures. (A) Characteristic snapshots at different compositions. (B) Probability of different hydrogen bond structures. Results demonstrate that water associates with itself to a greater extent at higher concentrations.
As inferred from the experimentally deconvolved Raman spectra, the simulations confirm that the O–H stretching frequency is determined by a large extent to the degree of hydrogen bonding between water molecules. To calculate the Raman spectra, we have employed a frequency map based approach. Specifically, in the purely inhomogeneous broadening limit, the Raman lineshape is a probe of the local electric field, ξ along the O–H bond vector. This follows from the a Stark effect and first order perturbation theory between the oscillator and the surrounding bath such that the frequency shifts are given by $\omega - \omega_0 = Q \xi$, where ω_0 and Q are taken here as empirical parameters determined to best fit the lineshape. Specifically, a procedure that has been employed by Geissler and coworkers in pure water and aqueous solutions, is to map the Raman lineshape to the distribution of electric fields acting on the hydrogen in the direction of the O–H bond vector. To validate this approach, we have plotted in Fig. 6(a) the distribution of electric fields on top of the experimentally measured O–H stretching region of the Raman lineshape for diluted HOD in D$_2$O/PC mixtures. Using diluted HOD in D$_2$O, allows us to decouple the oscillators, and mitigate effects from delocalization of the vibrations. As observed in past simulations, this simple classical perspective on the Raman lineshape allows us to identify specific molecular structures that give rise to features in the relatively broad lineshape.

The simulation and experimental lineshape for dilute HOD match well over the compositions considered, with an asymmetric shape rising quickly at high frequencies and falling slowly at low frequencies. Notably sharp features in the H$_2$O in PC lineshape at 3250 cm$^{-1}$ and 3650 cm$^{-1}$ are less pronounced in the diluted HOD spectra and the corresponding simulations, suggesting that some of the structure results from delocalization of the oscillation. Upon increasing the concentration of water, the simulated spectra from the mapped frequencies in Fig. 6(b) show the same basic trends as those observed experimentally, namely an increased broadening in the form of a lower frequency or, equivalently, a larger magnitude electric field. In the simulations, this growing mode at lower frequency is identified as the O–H oscillator donating a hydrogen bond to another water molecule. No other motif strongly correlates with the increasing intensity, as only local hydrogen bonding produces such dramatically different local electric fields (see Fig. S8, ESI†).

Propylene carbonate structure

To gain insight into the effect that the addition of water has on the bulk structure of PC, the carbonyl region of the experimental and simulated spectra were analyzed. The experimental carbonyl stretch Raman spectra as a function of water concentration are presented in Fig. 7 with the simulated spectra plotted in the inset. The carbonyl peak for pure PC has been reported to occur in the Raman spectrum at approx. 1780 cm$^{-1}$, with a Fermi resonance band causing a shoulder on the high-
frequency side. Here, we observe the carbonyl band for pure PC at 1779 cm\(^{-1}\), where it undergoes a small red-shift (\(\Delta\nu = \sim 2\) cm\(^{-1}\)) and an overall decrease in intensity as the concentration of water is increased (Fig. 7). The decrease in intensity of the band is a result of the dilution of PC that occurs upon each addition of water. As described above, the red-shift that this band undergoes is indicative of strengthening intermolecular interactions with the oscillator. The carbonyl band in vibrational spectra has previously proven to be a sensitive probe for hydration structure, producing significant shifts (upwards of \(\Delta\nu = 20-30\) cm\(^{-1}\)) upon changes in hydration. As a result, we assert that the water concentration-dependent red-shift of the carbonyl band is due to the formation of weak water–PC hydrogen bonding at this molecular site. These are in agreement with the MD simulations, where the C\(\equiv\)O stretch is computed in an analogous manner as those of the O–H stretch in water, using the electric field acting in the direction of the C\(\equiv\)O bond vector.

Further information on structural changes in PC can be gained through consideration of the polarized Raman spectra in terms of the noncoincidence effect (NCE). The noncoincidence effect refers to the frequency difference between the isotropic and anisotropic components of a polarized Raman band (\(\nu_{\text{NCE}} \equiv \nu_{\text{isotropic}} - \nu_{\text{anisotropic}}\)), which originates from resonant vibrational energy transfer between molecules that are intermolecularly coupled (e.g. by hydrogen bonds, permanent dipole moments, etc.). Coupling between dipoles in pure propylene carbonate produces a relatively large and positive NCE in the carbonyl band, typically \(\sim 10\) cm\(^{-1}\). In prior studies by the Allen lab and others, the NCE has been used to determine structural organization changes in dipolar liquids due to ion solvation. For example, Giorgini and coworkers demonstrated that the addition of mono- and divalent cation salts to acetone produced large, negative carbonyl NCEs due to solvent clustering around the cation.

In this study, we have calculated the isotropic \(I_{\text{iso}}\) and anisotropic \(I_{\text{aniso}}\) components of the carbonyl stretching band using the VV and VH polarized Raman spectra and the following equations:

\[
I_{\text{iso}} = I_{\text{VV}} - \frac{4}{3}I_{\text{VH}} \quad \text{and} \quad I_{\text{aniso}} = \frac{1}{3}I_{\text{VH}}.
\]

In Fig. 8, the carbonyl band NCE resulting from pure PC (Fig. 8(a)) and from the PC solution with the maximum water concentration, \(\chi_{\text{water}} = 0.296\), (Fig. 8(b)) are compared. The addition of water to PC causes a total NCE decrease of 0.5 cm\(^{-1}\), which is consistent with the formation of weak hydrogen bonds between the carbonyl of PC and water. The observed change in NCE as water is added to PC is small in comparison to previously reported carbonyl NCE changes in propylene carbonate as well as in other similar solvents. Thus, we conclude that the bulk structure of PC is not significantly perturbed by the addition of water up to the solubility limit.

The symmetric and asymmetric ester stretching bands were also analyzed to provide additional information on bulk PC liquid structure as a function of water concentration. The polarized and depolarized Raman response of the ester bands is plotted in Fig. S7 (ESI†). We find that the addition of water to PC causes a small blue-shift for both ester bands where \(\Delta\nu\) is 0.50 and 0.42 cm\(^{-1}\) for the symmetric and asymmetric bands, respectively. This shift likely indicates a slight weakening of intermolecular interactions with the ester oxygens as water is added, which supports the conclusion that the PC–water interaction occurs primarily at the carbonyl site and not the singly-bonded ester oxygens. Analysis of the NCE for the ester bands also supports this conclusion. The NCE for both ester bands remains relatively unchanged from the pure PC spectrum to the highest water concentration spectrum, only changing by \(< 0.08\) cm\(^{-1}\). Based on our analysis of the polarized Raman response of PC molecules as a function of water concentration, we conclude that the carbonyl is the primary site of interaction with water and that this interaction does not cause the bulk liquid structure of PC to rearrange to accommodate water solvation.

Conclusions

In this work, we characterize water concentration-dependent structural changes of a PC/water binary system using polarized...
Raman spectroscopy and molecular dynamics simulations. Gaussian deconvolution of the O–H region in the experimental spectra reveals a water hydrogen-bond structure that consists of either three or four sub-bands that are assigned based on the degree of hydrogen bonding. For water concentrations in PC less than \(z_{\text{water}} = 0.091 \), dangling-OH, low coordination, and moderate coordination states are observed. Above this concentration, a fourth sub-band is observed, which corresponds to fully coordinated, tetrahedral water. As evidenced by the evolution of the water hydrogen bond sub-bands, water is primarily solvated by PC under dilute conditions and does not tend to form aggregates. Increasing the water concentration leads to an increase in tetrahedral water structure and indicates that water exists primarily in aggregates at higher concentrations. MD simulation results support this conclusion as well as provide additional insight into the size and type of aggregates formed. Simulations of the system where \(z_{\text{water}} = 0.04 \) reveal that water exists as monomers 70% of the time, with dimers and trimers accounting for the remaining conformations. Interestingly, the simulations find that the mostly likely water structure at elevated concentrations is chains of water molecules, each with two hydrogen bonds. Experimental and simulation results show that the hydrogen bond structure of water is distinctly different from the bulk at all concentrations, where the presence of three and four coordinate water is lower and dangling-OH is higher in comparison to bulk. The bulk structure of PC is not significantly perturbed by the addition of water as demonstrated by a change in carbonyl NCE of only 0.5 cm\(^{-1}\). MD simulations find that the mostly likely water structure at elevated concentrations is chains of water molecules, each with two hydrogen bonds. Experimental and simulation results show that the hydrogen bond structure of water is distinctly different from the bulk at all concentrations, where the presence of three and four coordinate water is lower and dangling-OH is higher in comparison to bulk. The bulk structure of PC is not significantly perturbed by the addition of water as demonstrated by a change in carbonyl NCE of only 0.5 cm\(^{-1}\) from pure PC to the highest water concentration in PC. Overall, the addition of water to PC results in a relatively unperturbed PC structure, yet water structure evolves in a highly concentration-dependent manner. This yields a distribution of hydrogen bonded states including linear chains as well as structures with more tetrahedral local order.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

The authors acknowledge support from the National Science Foundation through grant no. CHE-2102313. J. B. C. would like to thank A. Enders for insightful comments on the manuscript.

References

42. M. Stick, M. Göttinger, M. Kurniawan, U. Schmidt and A. Bund, Hydrolysis of LiPF$_6$ in Carbonate-Based Electrolytes for Lithium-Ion Batteries and in Aqueous Media,
Published on 18 August 2023. Downloaded by University of California - Berkeley on 10/12/2023 4:31:44 PM.
J. Zischang and M. A. Suhm, The OH Stretching Spectrum of
G. J. Martyna, D. J. Tobias and M. L. Klein, Constant
H. C. Andersen, Rattle: A “Velocity” Version of the Shake
J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts,
A. Tokmakoff and P. L. Geissler, Hydrogen Bonds in Liquid
8. H. S. Senanayake, J. A. Greathouse, A. G. Ilgen and
9. W. H. Thompson, Simulations of the IR and Raman Spectra
10. T. Morawietz, O. Marsalek, S. R. Pattenaude, L. M. Streacker,
12. P. L. Geissler, Water Interfaces, Solvation, and Spectroscopy,
13. J. D. Smith, R. J. Saykally and P. L. Geissler, The Effects of
14. G. R. Medders and F. Paesani, Dissecting the Molecular
15. L. F. Scatena, M. G. Brown and G. L. Richmond, Water
16. P. N. Perera, K. R. Fega, C. Lawrence, E. J. Sundstrom,
17. B. Hess and N. F. A. van der Vegt, Hydration Thermodynamic
18. J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts,
19. J. Tomlinson-Phillips, J. Davis, D. Ben-Amotz, D. Spångberg,
41. A. Brodin and P. Jacobsson, Dipolar Interaction and Molecular Ordering in Liquid Propylene Carbonate: Anomalous Dielectric Susceptibility and Raman Non-Coincidence...
