Reversible CO Scavenging via Adsorbate-Dependent Spin Transitions in an Fe(II)–Triazolate Metal–Organic Framework

Scientific Achievement
A metal–organic framework featuring Fe(II) sites that reversibly and selectively convert between high- and low-spin forms upon CO binding, via a novel spin transition mechanism.

Significance and Impact
This material exhibits high selectivity for trace amounts of CO over H₂, N₂, and even strongly binding gases like CO₂, making it useful for production of pure H₂ or extraction of waste CO from industrial feeds. The associated spin transition mechanism can also potentially be used for other selective separations.

Research Details
- Fe-BTTri adsorbs CO at low partial pressures (1.45 mmol/g at 100 μbar) with very good selectivity over other gases (CO/H₂ IAST selectivity values reaching 10 000)
- Fe-BTTri is fully regenerable with heating for as little as 5 min
- Spin transition mechanism is supported by X-ray diffraction, Mössbauer spectroscopy, and SQUID magnetometry

Overview of spin transition mechanism and gas adsorption

Work was performed at UC Berkeley and the Advanced Light Source at Lawrence Berkeley National Laboratory.