New catalysts for carbon-neutral energy conversion processes are essential to addressing climate change and rising global energy demands. We are taking a unified approach to this small-molecule activation problem by developing molecular inorganic, biological, and materials catalysts for carbon dioxide reduction and water splitting that can be used in parallel under environmentally green, aqueous conditions. Biology and materials science provide concepts as well as components to develop new solar-to-chemical conversion processes. Molecular materials derived from metal-organic and covalent organic frameworks and related porous cages, along with molecular-nanoparticle composites, complement molecular inorganic catalyst designs.


Zee, D. Z.; Chantarojsiri, T.; Long, J. R.; Chang, C. J. "Metal-Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen", Acc. Chem. Res. 2015, 48, 2027-2036. [html] [pdf]

Thoi, V. S.; Sun, Y.; Long, J. R.; Chang, C. J. "Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions", Chem. Soc. Rev. 2013, 42, 2388-2400. [pdf] [html]


Jurss, J. W.; Khnayzer, R. S.; Panetier, J. A.; El Roz, K. A.; Nichols, E. M.; Head-Gordon, M.; Long, J. R.; Castellano, F. N.; Chang, C. J. "Bioinspired design of redox-active ligands for multielectron catalysis: effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water", Chem. Sci. 2015, 6, 4954-4972. [html] [pdf]

Thoi, V. S.; Kornienko, N.; Margarit, C. G.; Yang, P.; Chang, C. J. "Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex", J. Am. Chem. Soc 2013, 135, 14413-14424. [html] [pdf]

Karunadasa, H. I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J. R.; Chang, C. J. "A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation", Science 2012, 335, 698-702. [pdf] [html] [UC Berkeley press release] [LBNL press release] [Daily Cal article] [C&E News article]

Sun, Y.; Bigi, J. P.; Piro, N. A.; Tang, M. L.; Long, J. R.; Chang, C. J. "Molecular Cobalt Pentapyridine Catalysts for Generating Hydrogen from Water", J. Am. Chem. Soc. 2011, 133, 9212-9215. [pdf] [html]

Karunadasa, H. I.; Chang, C. J.; Long, J. R. "A Molecular Molybdenum-Oxo Catalyst for Generating Hydrogen from Water", Nature 2010, 464, 1329-1333. [pdf]


Cao, Z.; Kim, D.; Yu, Y.; Xu, J.; Lin, S.; Wen, X.; Nichols, E. M.; Jeong, K.; Reimer, J. A.; Yang, P.; Chang, C. J. "A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction", J. Am. Chem. Soc. 2016, 138, 8120-8125. [html] [pdf]

Lin, S.; Diercks, C. S.; Zhang, Y.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. "Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water", Science 2015, 346, 1208-1213. [html] [pdf] [LBNL News Story] [Science News Story]

Sun, Y.; Liu, C.; Grauer, D. C.; Yano, J.; Long, J. R.; Yang, P.; Chang, C. J.. "Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water", J. Am. Chem. Soc. 2013, 135, 17699-17702. [html] [pdf]

Sun, Y.; Sun, J.; Long, J. R.; Yang, P.; Chang, C. J. "Photocatalytic generation of hydrogen from water using a cobalt pentapyridine complex in combination with molecular and semiconductor nanowire photosensitizers", Chem. Sci. 2013, 4, 118-124. [pdf] [html]


Updated 8 August 2016