\[\int_0^{2\pi} d\phi \int_0^\pi d\theta \, Y_{l m}^* (\theta, \phi) \, Y_{l' m'} (\theta, \phi) = C_S_{l, m} \, S_{m, m'} \]

Radial Equation Next Time

\[10/6/04 \]

\[\int_0^{2\pi} d\phi \int_0^\pi d\theta \, \sin \theta \, Y_{l m}^* Y_{l m'} = 0 \quad \text{if } l \neq l' \text{ or } m \neq m' \]

Radial Equation

\[\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \ell (\ell + 1) \frac{1}{r^2} + \frac{2m}{\hbar^2} \left(E - \frac{2e^2}{r} \right) R = 0 \]

Physical Boundary Conditions

\[R(r) \to 0 \quad \text{as} \quad r \to \infty \]

At large \(r \)

\[\frac{1}{r^2} \left(2r \frac{dR}{dr} + r^2 \frac{d^2R}{dr^2} \right) + \ell (\ell + 1) \frac{1}{r^2} + \frac{2m}{\hbar^2} \left(E - \frac{2e^2}{r} \right) \to 0 \]

\[\frac{d^2R}{dr^2} + \frac{2m}{\hbar^2} E(R) = 0 \Rightarrow R(r) = e^{-\gamma} \]

\[\gamma = \frac{-2mE}{\hbar^2} \]

\[E < 0 \]
In general \(R(r) = \text{const} \left[\sum_{n} b_n r^n c^{-n^2} \right] \)

Even near zero

\[
\frac{\hbar^2 \frac{Z^2 e^2}{r^2}}{2m} = \text{integer} = n^2
\]

\(n = l+1, l+2, \ldots \)

\(l = n-1, n-2, \ldots \)

\[
\left(\frac{\hbar^2 \frac{Z^2 e^2}{r^2}}{2m} \right)^2 \frac{1}{n^2} = -\frac{2\hbar^2 E_n}{n^2}
\]

\[
E_n = -\frac{\hbar^2 \frac{Z^2 e^4}{2m^2}}{2} \left(\frac{1}{n^2} \right)
\]

Similiar to the Bohr model

In this, electron is distributed over space, while in Bohr model, \(e^- \) has well-defined orbit.
\[R_{10}(r) = \cdots \frac{2^{2}}{a_0} e^{-\frac{2r}{a_0}} \quad a_0 \text{ is Bohr Radius} \]
\[R_{20}(r) = \cdots \left(2 - \frac{2r}{a_0}\right) e^{-\frac{2r}{a_0}} \]
\[R_{21}(r) = \cdots \left(\frac{2r}{a_0}\right) e^{-\frac{2r}{2a_0}} \]

Normalization Constant

Summary:

\[f(r, \theta, \phi) = R_{n\ell}(r) Y_{\ell m}(\theta, \phi) \]

Projection of angular momentum onto some symmetry axis. Azimuthal principle.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ell)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(m)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The number of states is 3, 1, 5, 8, 3, and energy is independent of \(m, \ell \), so each of these are degenerate.

\[g_n = \text{Degeneracy} = n^2 \]
Orbitals & Radial Distribution

- The probability density for finding an electron between \(r \) and \(r + dr \) is

\[
\psi^*(r) \psi(r) \, dr
\]

Probability of finding an electron is \(|\psi(r)|^2 \frac{dr}{dA} \) or \(d^3r \)

In spherical coordinates

\[
d^3r = \rho^2 \sin \theta \, d\rho \, d\theta \, d\phi
\]

\[
|\psi_{nm}(\theta, \phi, r)|^2 \rho^2 \sin \theta \, d\rho \, d\theta \, d\phi
\]

Gives probability of finding an electron in some volume \(dr \, d\theta \, d\phi \)

Density between \(r \) to \(R \) to find probability that an electron is located at some distance \(dr \) from the nucleus, we integrate out spatial dependence

\[
L^2 \int_0^\infty \int_0^\pi \int_0^{2\pi} \rho^2 |\psi_{nm}|^2 \sin \theta \ d\rho \ d\theta \ d\phi = 1
\]

\[
\int_0^R \left| \psi_{nm}(r) \right|^2 r^2 \, dr = 1
\]
Most Probable r?

Let $n = 1$

$E(r) = a e^{-2r/a_0}$

$P(r) \propto r^2 e^{-2r/a_0}$

$$\langle r \rangle = \int_0^\infty r^2 e^{-2r/a_0} \, dr$$

Average r - Nucleus Distance

Its max. occurs at $\frac{dP}{dr} = 0$ (its maximum)

$$\frac{dP}{dr} = \frac{2}{r} P(r) - \frac{2}{a_0} P(r) \Rightarrow r_{mp} = \frac{a_0}{2}$$

$$\langle r \rangle = \int_0^\infty r^3 e^{-2r/a_0} \, dr$$

$I_n = \int_0^\infty r^n e^{-ar}$

$r^n e^{-ar} = \frac{d^n}{dr^n} d^n e^{-ar}$

$I_n = \int_0^\infty d^n e^{-ar}$

$\frac{d^n}{dr^n} \left(\frac{1}{a} e^{-ar} \right) = \frac{d^n}{dr^n} \left(\frac{1}{a} e^{-ar} \right) \bigg|_0^\infty$

$$\langle r \rangle = \frac{6}{2^{1/2}} \frac{2}{2} = \frac{3}{2} r_{mp} = \langle r \rangle$$
p(r)

S-orbitals

\[r_{p_{1}}(r) \]

Discrepancy due to that \(p(r) \) goes to 0 as \(r \to \infty \), but never equals 0 (i.e., it is not completely symmetric)

\[r_{p_{2}}(r) \]

\[r_{p_{0}}(r) \]

2s

\[r_{2s} \]

\[r_{2s}^2 \]

P-orbitals \(\rightarrow l = 1 \Rightarrow m = -1, 0, 1 \)

\(\Phi_{m} \) is complex \(\Phi_{m} \neq \Phi_{-m}^{*} \)

\[\cos(m\phi) = \frac{1}{2} [\Phi_{m}(\phi) + \Phi_{-m}^{*}(\phi)] = \frac{1}{2} [\Phi_{m}(\phi) + \Phi_{-m}(\phi)] \]