Erratum

Femtosecond studies of electron tunneling at metal–dielectric interfaces
(Chemical Physics 205 (1996) 191–203) 1

R.L. Lingle, Jr. a,b, N.-H. Ge a,b, R.E. Jordan a,b, J.D. McNeill a,b, C.B. Harris a,b

a Department of Chemistry, University of California, Berkeley, CA 94720, USA
b Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

In the last stages of the production process, after the authors' proof had been returned, an unfortunate error occurred. The unrevised figures 1, 5, 7, 8 and 9 were published instead of the revised ones. The correct figures are printed below.

The publisher apologizes to the authors and to the readers for this error.

1 SSDI of original article: 0301-0104(95)00375-4.

Published by Elsevier Science B.V.

PII S0301-0104(96)00136-X
Fig. 7. The femtosecond population dynamics of the $n = 1, 2,$ and 3 states for a monolayer of n-heptane/Ag(111). The component at time zero in the $n = 2$ and 3 data has similar dynamics to the instrument function (see text) and is tentatively assigned to TPPE from the valence band edge. The data are modeled by convolving the instrument function shown in Fig. 4 with the sum of a single exponential decay and the function of Eq. (2).

Fig. 8. The femtosecond population dynamics in the $n = 1$ state for bare Ag(111), monolayer n-heptane/Ag(111), and bilayer n-heptane/Ag(111). The data are fit by a rise time and a decay time according to the model in Eq. (2).

Fig. 9. Model potential by Cole for a $d = 8$ Å dielectric overlayer on a metal surface, corresponding to a bilayer of a n-heptane. The potential in the dielectric region, $z < d$, is the screened image potential of the metal plus the bulk electron affinity of the material, where $V_0 = +0.2$ eV and $\epsilon = 2.0$ in Eq. (3). The potential in the vacuum region shown in Eq. (4) is the solution to the boundary value problem for an electron outside a continuum dielectric layer on a perfect conductor. The parameter b is the cutoff length for the Coulomb potential outside the dielectric/vacuum interface. The dashed lines show the lowest two eigenvalues of the potential obtained by solving the Schrödinger equation as described in the text.